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Concurrent MR-NIR Imaging for

Breast Cancer Diagnosis
Birsen Yazici

I. INTRODUCTION

Near infrared (NIR) diffuse optical imaging provides quantitative functional information from breast

tissue that can not be obtained by conventional radiological methods. NIR techniques can provide in

vivo measurements of oxygenation and vascularization state, the uptake and release of molecular contrast

agents and chromophore concentrations with high sensitivity. There is considerable evidence that tumor

growth is dependent on angiogenesis [25]-[27], and that tumor aggressiveness can be assessed from its

increased number of new vessels and reduced oxygenation state relative to normal breast tissue and

benign breast lesions [28]-[30]. NIR diffuse optical tomographic (DOT) methods has the potential to

characterize angiogenesis related vessel density as it measures the total hemoglobin concentration and

provide the ability to differentiate between benign and malignant lesions based on oxygen saturation.

Furthermore, NIR methods are non-ionizing, relatively inexpensive and can be made portable.

The diagnosis and management of cancer involves several stages where magnetic resonance (MR)

plays a valuable and growing role. MRI of the breast is now a routine part of the clinical care in many

centers [35]-[37]. Magnetic Resonance imaging (MRI) is indicated in patients with inconclusive clinical

and/or mammographic examinations. Patients that may benefit include women with radiographically

dense breasts, and high risk potential population [38]-[39]. MRI possesses less than 10% contrast for

soft tissue pathology [40]. Gadolinium (Gd) enhanced MRI offers much better contrast and is specific

for tumor vessel imaging. However, the signal in the Gd-MRI arises from the larger vessels as the

contrast agent is flushed out of the vascular bed of the tumor [41]. In comparison, NIR measurements

of absorption have extremely high contrast. It was reported that 5% change in vascular density as

measured histologically in ductal carcinomas leads to approximately 300% contrast in NIR absorption

coefficients [31]. Furthermore, there are studies suggesting that the kinetics of contrast enhanced optical

spectroscopy provides information about the cellular spaces [34]. On the other hand, NIR DOT suffers
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from poor spatial resolution and as such, it is unlikely that NIR imaging will be a stand-alone screening

method in the general population. Therefore, we believe that the concurrent MR and NIR imaging brings

together the most advantageous aspects of the two imaging modalities (structural and functional). In the

future, we envision that this multimodality imaging approach will lead to high resolution hemoglobin

tomography and comprehensive quantitative functional tissue characterization to differentiate malignant

and benign tumors.

In this project, the clinical studies are performed using the novel MR-NIR hybrid time-resolved

spectroscopy (TRS) imager and fast Indocynine Green (ICG) enhanced spectroscopic imager developed by

Dr. Chance, a Co-PI of this proposal, at the University of Pennsylvania (UPenn), Biophysics Department,

Diffuse Optical Imaging and Spectroscopy Laboratory. The clinical study has been approved by the UPenn

Institutional Review Board under. The project plans to leverage the expertise of Dr. Linda Nunes, M.D;

Co-PI of this proposal, at Drexel School of Medicine, Radiologic Sciences Department, in systematic

interpretation of MR breast architecture and kinetics for diagnosis. The PI and her collaborators at Upenn

have been working on DOT image reconstruction problem and developed a number of approaches for

DOT using a priori anatomical information in the past [42]. The PI also developed statistical tissue

characterization methods for ultrasound breast cancer diagnosis [47]-[51]. Methods, tools and results

developed in these studies are directly applicable to the proposed research.

The central hypothesis of this project is that the concurrent MR-NIR diffuse optical tomographic

methods coupled with fast contrast enhanced NIR spectroscopic methods provide fundamentally new

quantitative functional and structural information for breast cancer tumor characterization and detection.

This new information can be obtained by novel modeling, analysis and data fusion methods from the

tomographic, temporal and cellular-based contrast measurements, which exploit fast imaging techniques

together with TRS tomographic methods. In this project, we investigate new methods for multi-modality

high spatial resolution hemoglobin tomography, pharmacokinetic modeling of molecular contrast agents

based on fast NIR spectroscopy and analysis of structural and functional information provided by MR and

NIR imaging methods for breast cancer detection based on receiver operating characteristics methodology.

Specific aims of the project are as follows:

* Aim 1: Utilize a priori anatomical information provided by MRI, to reconstruct 3D high resolution

hemoglobin, water and lipid concentration, and oxygen saturation images directly from 6 wavelength

time resolved optical measurements. Evaluate improvements in image reconstruction between that

of stand-alone NIR and concurrent MR-NIR measurements using water and lipid images obtained
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from MRM.

* Aim 2: Develop a compartmentalized pharmacokinetic modeling of ICG, optical contrast agent, and

extract quantitative parameters that can characterize tumor metabolism and angiogenesis. Compare

ICG kinetics with the Gadolinium, MR contrast agent, kinetics and biopsy findings.

* Aim 3: Evaluate accuracy of breast cancer diagnosis based on the quantitative functional infor-

mation extracted from stand-alone NIR system. This information includes hemoglobin, water and

lipid concentration, optical scatter power and oxygen saturation images, and ICG pharmacokinetic

parameters. Evaluate the added value of ICG kinetic parameters in breast cancer diagnosis.

* Aim 4: Combine NIR based breast cancer diagnosis features with the systematic MR breast archi-

tecture and kinetics interpretation model developed by Dr. Nunes, M.D, Co-PI of this proposal, to

evaluate the sensitivity and specificity of concurrent MR-NIR imaging method. Compare results with

that of stand-alone MR and NIR results.

In the following sections, we will provide detailed description of our current research in line with the

statement of work (SOW) and the aims outlined above. For the period of June 1st, 2004 to May 31st

2005, SOW includes only the first two aims of the project.

II. BODY: AIM 1- MR-GUIDED DIFFUSE OPTICAL TOMOGRAPHIC IMAGE RECONSTRUCTION

The SOW with regard to Aim 1 includes the following specific tasks:

• Task 1. Develop a portable toolbox to process MRI images to extract prior information that will be

used to constrain the optical image reconstruction. This toolbox will perform 3D MR image seg-

mentation using standard methods and extract the following information: Average optical properties

of major breast tissue types, spatially varying optical grid structure. 0-2nd month. Completed.

* Task 2. Modify our existing optical image reconstruction algorithms that are based on perturbation

model to incorporate diffusion equation in an iterative fashion. 2-8th month. Completed.

* Task 3. Perform direct reconstruction of hemoglobin concentration, oxygen saturation, water and

lipid instead of optical absorption and scattering coefficients. 6-10th month. Completed.

* Task 4. Evaluate improvements in image reconstruction in terms of spatial resolution and quantitative

accuracy between the stand-alone NIR and concurrent MR-NIR measurements using the water and

lipid images obtained from MR images. 10-12th month. Completed.
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A. Aim] - Taskl:

Figure 1 shows a snapshot of the MR a priori information processing toolbox that was developed by

a team of two undergraduate students as a part of their senior design project under the PI's supervision.

The code is programmed in C. The program can load a stack of clinical MR images and allows the

user to interactively identify the coregistration fiducials mounted on the MR compression plates, perform

3D segmentation, interactively identify region of interest, define an adaptive mesh structure (2D), and

perform standard 2D DOT image reconstruction (2D linear least-squares).

(a) A snapshot of the toolbox developed by (b) A slice of the (c) Adaptive mesh

the PI's undergraduate senior design team segmented MR fit to the segmented

to perform preprocessing on MR images breast image. data.

and basic DOT reconstruction.

Fig. 1. The anatomical and optical images are shown on the left and right, respectively. Note the spatial mismatch between

the two images.

B. Aiml - Task2:

The outcome of our research regarding Aim 1, Task 2 are reported in the following publications: [52]-

[55].

Two-level Domain Decomposition Methods (DDM) for Diffuse Optical Tomography (DOT) Two-level

domain decomposition methods are introduced for the forward and the inverse problems of DOT. The

proposed methods are TMODDM(Two-level Multiplicative Overlapping Domain Decomposition Method)

for the forward solver and TMSDM(Two-level Multiplicative Space Decomposition Method). The con-

vergence analysis and the estimation of computational costs are given. Numerical implementation shows
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that the proposed algorithm gives less mean square error and more clear image than the image produced

by non-DDM. Furthermore DDM approach provides a framework to perform region of interest DOT

image reconstruction based on the MR a priori anatomical information.

DOT is formulated by photon diffusion equation in the frequency domain. In the present approach,

we have used the finite element method using piecewise bilinear element to compute photon density in

the forward problem and the trust region method to compute optical coefficients which is a solution of

nonlinear constraint minimization problem.

In DDM, the domain of interest is divided by overlapping subdomains as in Figure 2. Usually, the

matrix solver for N number of nodes takes N2 or N 3 order of computations. But at each subdomain

the computation becomes (N/d)2 or (N/d)3 computations for each iterations. Thus if we use d number

of parallel computers, the computation is the number of iteration times 1/(d 2) or 1/(d 3). Although, we

use just 1 computer, the computation requires the number of iteration times 1/d or 1/(d 2).

Two-level method involves computing at the fine level with the aid of the coarse level reconstruction.

Usually, the fine level computation decreases high frequency error, whereas the coarse level computation

decreases low frequency components of the entire domain error. Using a two-level method for the forward

problem, we can reduce the number of iterations. In 20 x 20 meshes, we get mean square error less than

10- 5 for just 3 iterations. It is known that this number of iteration does not depend on the mesh size

and subdomain size. Using many subdomains, we can get a more speed-up of the computation. In the

inverse solver, the convergence is proved assuming the initial guess is sufficiently close to the target

optical coefficients. Since the coarse level image approximates the low frequency of the target optical

coefficients well, we have chosen coarse level correction before DDM step. Numerical experiments shows

that these two-level DDM converges more fast than non-DDM in mean square error. The tumor image

was more clear in two-level DDM than non-DDM.

The number of iteration obtained by using d subdomains is tabulated in Table 1. Here, N,: The number

of nodes, N,: The number of elements d: The number of subdomains, MF: The number of iteration for

the forward solver, p: The order of computation with non-DDM. For nonsparse full matrix, p = 3, and

for usual sparse matrix p is between 2 and 3.

Thus if take more subdomains and use more parallel computers, we get much computation savings.

In the proposed method, if we know a priori information about the approximate location of tumor,

using a prior information from secondary modality such as MRI, X-ray computed tomography (CT) or

by a posteriori information from the coarse level image, we get better results by updating the coefficients



Method Computational cost

non-DDM O(N.P) + O(N.P)

TMSDM on 1 computer MFdl-PO(NP,) + dl-PO(NP)

TMSDM on d computers MFd&-O(NP) + d-PO(NP')

TMSDM on d2 computers MFdPO(NP) + d-PO(NP)

TABLE I

THE COMPARISON OF THE COMPUTATIONAL COSTS FOR THE NON-DDM METHOD, TMSDM FOR ONE, d, AND d2

COMPUTERS.

(a) (b)
Fig. 2. (a) 4 x 4 domain decomposition with 20 x 20 mesh, (b) 3 x 1 domain decomposition with 24 x 12 mesh.

the special region of interest. Updating optical coefficients only in fourth subdomain in Figure 3(e), we

have a better results than the image of TMSDM on all the subdomain in Figure 3 (d) or the image of

non-DDM in Figure 3 (f).

1) Numerical results: The proposed method is implemented and compared with non-DDM in the

following settings: pt' = 8cm-, Ipa at background = 0.05cm-, Ma at tumor = 0.2cm 1, w = 27r.

10OMHz, c = 3 * 1010 cm/sec, a = 1.

The construction of diffusion coefficient r. whenILa is fixed is investigated in [53]. And the recon-

struction of /pa when /2 is fixed is implemented in Figures 3, and as in [54], [55].

The proposed method gives better result than non-DDM as in figure 3(d), as compared to figure 3(f).

And we also get the results: Tikhonov parameters with a• = 0.01 gives better results than no regularization

as in figure 3(d) as compared to figure 3(c). Detailed simulation studies can be found in [53], [54], [55].
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005

(a)The image of pa to be reconstructed. White (b)The location of 20 sources and 20 detectors.

region represent background tissue with

a =0.05cm- 1 and black region represent

anomaly with /a = 0.2cm- 1.

I I0

(c)The reconstructed image of the absorption (d)The reconstructed image of the absorption

coefficient using Algorithm TMSDM with a = 0 coefficient using Algorithm TMSDM with

resulting in L2 norm error 0.0949. a = 10-2 resulting in L2 norm error 0.0824.

(e)The reconstructed image of the absorption (f)The reconstructed image of the absorption

coefficient using Algorithm TMSDM only on coefficient not using Algorithm TMSDM with

fourth subdomain with a = 10-2 resulting in L2  a = 10-2 resulting in L2 norm error 0.0926.

norm error 0.0755.
Fig. 3. The reconstruction of the absorption coefficient on = [0, 6] x [0, 6] with 2 x 2 subdomains, 20 detectors, 20 sources,

and 400 pixels.
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C. Aiml - Tasks 3 and 4:

1) MR-Guided Hierarchical Bayesian Formulation of the Inverse DOT Problem: The outcome of our

research regarding Aim 1, Task 3-4 are reported in the following publications: [2], [4], [42], [43], [44],

[45], [46].

DOT poses a typical ill-posed inverse problem with limited number of measurements and inherently

low spatial resolution. Both the low spatial resolution and ill-posedness of the inverse problem require

the use of a priori information with high spatial resolution. In this context, we developed a hierarchical

Bayesian approach to improve spatial resolution and quantitative accuracy by using a priori information

provided by a secondary high resolution anatomical imaging modality, such as MR or X-ray. In such

a dual imaging approach, while the correlation between optical and anatomical images may be high,

it is not perfect. The proposed hierarchical Bayesian approach allows incorporation of partial a priori

knowledge about the noise and unknown optical image models, thereby capturing the function-anatomy

correlation effectively. In other words, the hierarchical Bayesian approach tackles with the fact that the

correlation between the anatomical and optical images may be low. For example, there may be regions

in the optical image that do not have any anatomical counterparts such that the tumor may be apparent

in the optical image, but may not have a corresponding signature in the anatomical image. Furthermore,

average optical coefficients extracted from anatomical images may be significantly different than the true

optical coefficients of tissue. As a result, the assumption of strong optical-anatomy correlation may cause

undesirable, erroneous bias in optical image reconstruction. Therefore, more flexible prior models are

needed to properly represent optical-anatomy correlation. The hierarchical Bayesian framework affords

such a flexibility in designing prior image and noise models. In the hierarchical Bayesian framework, one

can formulate the inverse problem in multiple stages where each stage includes information about the

unknown parameters of the preceding stage. The first stage of the hierarchy includes the data likelihood

and the first stage of the image prior, which are comprised of statistical models for the noise and optical

image, respectively. These models include parameters associated with noise and image statistics, which

are not known precisely in practice. These unknown parameters are referred to as hyperparameters, which

can be regarded as random variables. The succeeding stage of the hierarchical formulation incorporates

a priori information about the hyperparameters in the form of prior distributions - so called hyperpriors

- defined on the hyperparameters. The incorporation of the second stage concludes the design of the

two-level hierarchical noise and image models.

In order to estimate the hyperparameters, we adapt the linear conjugate gradient (CG) algorithm to
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include a hyperparameter estimation step followed by an image update. In this context, we apply an

iterative empirical Bayesian approach to estimate the hyperparameters, which in turn gives the maximum

a posteriori (MAP) estimates of the hyperparameters at each CG iteration prior to the image update.

Hence, the noise and image models are accommodated at each update of the hyperparameters along with

the solution process. We refer to the following paper for further details [4] on hierarchical Bayesian

formulation and estimation of hyperparameters.

In the following section, we present the optical image reconstruction results based on the developed

hierarchical Bayesian approach in comparison to the maximum likelihood estimate of the same image.

We consider two cases to show the effectiveness of the hierarchical Bayesian approach:

1) The tumor is present both anatomically and optically; thus perfect correlation exists between the

anatomical and optical images.

2) The tumor is present optically, however it has no corresponding signature in the anatomical image.

We show that the hierarchical Bayesian approach and the associated hyperparameter estimation

effectively captures the inconsistency between the anatomical and optical images, thereby providing

reliable optical image estimates.

2D Experiment with MR-simulated data:

We used the Ti-weighted MR breast image from [1] to design a realistic optical breast model (fig-

ure 4). The MR breast image was segmented into parenchyma and adipose layers by applying a simple

Fig. 4. The original MR breast image with an artificial tumor inserted.

thresholding algorithm with respect to the MR image intensity values. Next, a tumor corresponding to

an infiltrating ductal carcinoma revealed by Gd-DTPA (Gadolinium-diethylenetriamine pentaacetic acid)

enhancement was inserted (shown in figure 4 as well). Each sub-region was assigned an absorption value
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as indicated in [1] (adipose 0.03cm_ 1  parenchyma - 0.06 cm- 1 , umor = 0.09 cm- 1 ) to obtain an

initial template (figure 5(b)). To simulate a corresponding optical image, zero mean Gaussian noise was

0.08 008

).06 0.06

000 1000

003 003

0.02 0.02

0.01 0.01

(a) (b)

Fig. 5. The anatomical and optical images are shown on the left and right, respectively. Note the spatial mismatch between

the two images.

added prior to filtering the image by a low-pass filter. The resulting optical image is shown in figure 5(b).

Note the quantitative and spatial mismatch along the boundaries and especially within the tumor. The

homogeneous diffusion coefficient of the medium was set to 0.042 cm. 9 frequencies ranging from 0

to 244 MHz were used to obtain 729 measurements with 9 sources and 9 detectors positioned along

x-axis on opposite sides. The optical medium was uniformly discretized into 90 pixels along x-axis and

60 pixels along y-axis leading to a total of 5400 1 x 1 cm2 pixels.

We performed two types of experiments to test the performance of the proposed hierarchical Bayesian

approach for this problem:

(i) Tumor present both anatomically and optically: In this experiment, the template extracted from the

anatomical image shown in figure 5(a) was used to design the hierarchical image prior. As a result, the

optical image was segmented into three sub-images each of which corresponded to the labeled images

in the anatomical image as shown in figure 5(a). In the design of the hyperprior defined on the mean

(i.e. p(MIC)), values that significantly different than the actual mean of the sub-images were used. Thus,

this experiment evaluates the robustness of the proposed method when the true statistics of the optical

image are significantly different than the statistics extracted from the prior anatomical image.

The reconstructed image and the sub-image zoomed into the tumor region are shown in figures 6(a)

and 6(c), respectively. For comparison, the maximum likelihood (ML) estimate of the image are shown
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in figures 6(b) and 6(d). The simulation results show that hierarchical Bayesian approach leads to

qualitatively better results and resolves the tumor more accurately.

0.08 •. / 0.00

0.05

002.0

o1o, 0.02
0.01 00

(a) (b)

(c) (d)

Fig. 6. The hierarchical Bayesian reconstruction of the optical image (a) using the anatomical template shown in figure 5(b)

for the design of the hierarchical image model. Figure (c) shows the image that zooms into the tumor region in the optical

image shown in (a). The maximum likelihood (ML) estimate of the entire image and the sub-image focusing the tumor region

are shown in (b) and (d), respectively. The rectangular box in the figures shows the actual location of the tumor.

In figure 7, the estimates of the hyperparameters associated with the noise and image models are given

as a function of the iteration number. Note that the mean value estimates for each sub-image converge to

actual values, even though the corresponding assigned hyperparameters regarding the mean value deviate

from the true average optical values by at least 15% (see table II). The experiment also demonstrates that

the initialization of the hyperparameters does not have any effect on the performance of the estimation

(figure 7).

(ii) Tumor present optically but not anatomically: In this experiment, we removed the tumor region

from the template extracted from the prior anatomical image, but kept it in the optical image as shown in
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(a) The estimated mean values #i for each (b) The estimated standard deviation 6i

sub-image vs iteration number are shown, for each sub-image vs iteration number are

The estimates for the parenchyma, adipose shown on the left. The estimates for the

and tumor sub-images are given at the top, parenchyma, adipose and tumor sub-images

middle and bottom, respectively, are given at the top, middle and bottom,

respectively. The noise scale estimate , vs

iteration number is shown on the right.

Fig. 7. The mean value and the standard deviation estimates for each sub-image (sub-images are determined by the anatomical

image) and noise scale estimate versus iteration number are shown. The thick solid line shows the estimated values. The constant

solid line in (a) shows the actual mean value and the constant dashed line in (a) shows the assigned mean value (/ti + /ao)

used in the design of the hyperprior defined on the sub-image means. The actual mean values in these sub-regions are 0.032,

0.058 and 0.076, respectively.

figures 8(a) and 8(b). As a result, the optical image was segmented into two-sub images. The objective

of this experiment is to evaluate how well the proposed method reconstructs optical tumors when they

are not anatomically present.

The reconstructed images for this experiment are given in figures 9(a) and 9(c), respectively. The ML

estimate of the image is given in figures 9(b) and 9(d). We observe that, even though there is a significant

mismatch between the optical image and the anatomical counterpart in the tumor region, the hierarchical

Bayesian formulation leads to a qualitatively better reconstruction than the ML approach, even around

the tumor. Furthermore, the tumor is better localized as compared to the ML solution and is not biased

towards the a priori anatomical image. The error in the localization of the tumor can be attributed to the

source-detector geometry. The propagation of light along y-direction results in a smoothing effect on the

optical image along y-direction. This effect is enhanced near source and detectors due to the behavior

of the solution of the diffusion equation. The vertically smoothing effect can be observed in the ML
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0070.0
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Fig. 8. The anatomical template (a) and the original optical image (b). Note that the tumor is not anatomically present.

estimate of the image more apparently (figures 9(b) and 9(d)). The smoothing effect can be suppressed

by incorporation of a priori information for the tumor as in case (i), where the tumor is better resolved

(figure 6(c)). Further improvement can be achieved by employing sources and detectors positioned along

y-axis as well as along x-axis.

In figure 10, the average absorption value of each reconstructed sub-image vs iteration number is given.

The sub-images correspond to those as indicated by the actual optical image shown in figure 5. Note

that the mean value of the reconstructed image in the tumor region converges to the actual value even

though the anatomical image asserts that no tumor exists.

The set of parameters used in the design of hyperpriors for these experiments and the actual mean of

absorption values for each sub-image are shown in table II.

TABLE II

THE ACTUAL MEAN OF THE ABSORPTION VALUES IN EACH SUB-IMAGE AND THE PARAMETER SET USED IN THE INVERSE

PROBLEM FORMULATIONS FOR THE MR-SIMULATED EXPERIMENTS I AND II. Ao = 0.0439 FOR THIS EXPERIMENT. N/A

STANDS FOR "NOT APPLICABLE".

Sub-images

Parenchyma Adipose Tumor

The first (Ft + pao, Vi): (0.038, 0.23) (0.05, 0.3) (0.09, 0.54)

experiment (•, '-y): (0.015, 0.228) (0.02, 0.3) (0.036, 0.54)

The second (fAi + A4o,Oi): (0.03, 0.18) (0.06, 0.36) N/A

experiment (AI,y "): (0.012, 0.18) (0.024, 0.36) N/A
(Aac

t
ual + ao): 0.032 0.058 0.076
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Fig. 9. The hierarchical Bayesian reconstruction of the optical image (a) using the anatomical template shown in figure 8 for

the design of the hierarchical image model. Figure (c) shows the image that zooms into the tumor region in the optical image

shown in (a). The ML estimate of the entire image and the sub-image focusing the tumor region are shown in (b) and (d),

respectively. The rectangular box in the figures shows the actual location of the tumor.

2) MR-Guided Direct Recovery of Blood Volume and Saturation: A detailed discussion of the research

described in this section can be found in [2].

The estimation of the absorption coefficient at several wavelengths enables the provision of spatial maps

of the targeted chromophores. In the case of the breast, the four chromophores of potential diagnostic

interest are the oxy- and deoxy-haemoglobin, the water and the lipid. The concentrations of these breast

constituents are linearly related to the absorption values.

Solving the linear system on a voxel basis for a spectral set of absorption distributions gives the

functional maps required for diagnostic purposes, which can be termed as "indirect imaging". However,

indirect imaging requires consecutive solutions of two linear systems, both of which are ill-posed. In order

to overcome the burden and minimize the systematic errors due to the ill-conditioning of both inverse
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adipose and tumor sub-images are given at parenchyma, adipose sub-images are given

the top, middle and bottom, respectively, at the top and bottom, respectively. The

The domains of the sub-images correspond sub-images correspond to the sub-images

to the domains in the optical image shown defined by the anatomical template shown

in figure 8(a). in figure 8(b). The noise scale estimate ,

vs iteration number is shown on the right.

Fig. 10. The mean values of the reconstructed sub-images vs iteration number (a). The estimated values of the standard

deviation of the two sub-images and the noise scale A are shown in (b).

problems, a method aiming at directly imaging the functional parameters has been proposed [32]. This

method takes advantage of the linear relationship and formulates the inverse problem in terms unknown

chromophore concentrations [2]. This new linear system is also poorly conditioned and great care should

be taken during the pre-conditioning of this sensitivity matrix. In our case, we use an average column

scheme [33]. This specific preconditioning scheme led to the most accurate reconstructions.

The functional parameters that we are interested in are the blood volume:

[BV] = [Hb] + [Hb0 2] (1)

and
[Hb0 2] _ [Hb021

[Sa02] = [Hb] + [Hb0 2 ] [BV] (2)

Simulation Experiment Measurements were obtained by solving the frequency-domain diffusion equation

with a finite difference approach (FDM). We restricted our simulations to a two-dimensional (2D)

geometry for computational efficiency and to a continuous wave data set type. The slab thickness was
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6 cm simulating a soft compressed breast. We placed nine sources on one side of the slab and nine

detectors on the other side, both evenly stretched along 8 cm (see figure 11). Two square inclusions of

1 cm 2 were simulated in this model.

sources (cm")

Background Left object Right object

S0.1 SO (7M) 0.02 0.6 0.12

0.08 Sa02 (%) 70 6.5 so

10.06 690 750 780 805 830 850
0.04 1, (crn-') 9.268 8.386 8,X00 7.646 7.425 7.216

10.02 -1 (c) 0.016 0.0 016 0.06 0.016 0.018 0.019

de ctors Pkrn(cnI-|) 0,054 0.050 0.050 0.049 0.053 0.056
0 A•, • (CM-1 0,140 0ý1 15 0.1O7 0.095 o0300 0.105

12 (cm)

Fig. 11. Optical model used for the simulations (left).The optical properties displayed here correspond to A = 750nm.

Functional parameters used to define the optical properties to generate the synthetic measurements and optical parameters for

the spectral set investigated. No [H20] and [Li] constituents were used in these simulations for simplicity.

~~~1 42 X l ~1

.o p0o4 oo o.o. o .On7 2 400 0 6 So i0

Fig. 12. (a) Blood volume (mM) reconstructions and (b) saturation estimates (%) in the case of classical indirect imaging.

First, the estimation of the functional parameters simulated is accomplished with a conjugate gradient

descent (CGD) algorithm in the case of indirect imaging without using any kind of prior. The results are

displayed in figure 12. Then reconstructions using the indirect imaging approach within the hierarchical

Bayesian framework [2], [4] are provided in figure 13. First, an estimation of the absorption coefficients at

the six wavelengths was performed using spatial a priori information and a conjugate gradient algorithm

with the PolakRibiere method [4]. The assigned mean values for the absorption coefficients were the
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Fig. 13. 0(a) Blood volume (mM) reconstructions and (b) saturation estimates (%) in the case of Bayesian indirect imaging.
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Fig. 14. (a) Blood volume (mM) reconstructions and (b) saturation estimates (Bayesian direct imaging. The assigned mean

values correspond to the true concentration values with a 30% level of confidence.

simulated ones and 30% of the assigned mean values were used as the standard deviation. Then classical

spectroscopy was performed on the resulting optical maps to solve for [HbO2] and [Hb] concentrations.

In the second case, the results using physiological and spatial a priori information are depicted in

figure 14. The assigned mean values for the chromophore concentrations were the exact ones with standard

deviations 30% of the mean values. The functional quantitative values retrieved from each case and for

the relevant region of interest are summarized in table 15.

In this work [2], we reported our first step towards incorporating physiological and spatial a priori

information derived from MRI to assist DOT. Better estimates of the main functional parameters that are

[BV] and [SaO2] were achieved.
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Baclk~rouiid Left object Right, object

[BlI] fS~ac),] [AV] [tS~a 2] [BVI] [50J

Indirect hna•ing 0,02P3 71 0.042 67 0U075 57
B ayeshn indirect imaging 0.019 72.46 0.065 6173 0.122 55.44
Bayesi'.ldiret. imagin ,0.020 69.95 0.061 65,27 0.1227 50.02

Fig. 15. Functional parameters recovered with the three approaches and for the three different functional areas. The values

proposed here correspond to the mean value of the entire ROI defined as the a priori spatial masks. [BV] in mM and [SaO2]

in %.

III. BODY: AIM 2 - PHARMACOKINETIC MODELING OF ICG

Aim 2 of the SOW involves the following specific tasks:

"* Task 1. Investigate compartmentalized pharmacokinetic models for Gd and ICG to model flow

dynamics of ICG in extravascular extracellular space and plasma. 0-6th months. Completed

"* Task 2. Develop mathematical methods to extract parameters from ICG pharmacokinetic model to

capture contrast agent flow kinetics. 6-9th months. Completed.

"* Task 3. Perform simulation and in vivo clinical experiments to validate pharmacokinetic model.

9-15th months. Ongoing.

"* Task 4. Compare ICG flow dynamics with the Gd flow dynamics of the breast MRI data. 15-18th

months. Ongoing.

A. Aim 2 - Task 1 and 2:

The outcome of our research regarding Aim 2, Task 1 and 2 are reported in the following publications

and presentations: [5], [6], [7], [8], [9].

In order to utilize a compartmentalized model for the ICG optical contrast agent dynamics, to extract

parameters that can characterize tumor physiology, metabolism, and angiogenesis using fast temporal

NIR spectroscopy we developed three different compartmental models namely, the four, three and two-

compartment models, to model the pharmacokinetics of ICG in cancerous tumors.

The four-compartment model includes capillary region, interstitial fluid region (ISF), parenchymal cell

region and intracellular binding site as compartments. Figure 16 illustrates the capillary and extracapillary

space relevant to the four compartment model.The ICG, injected intravenously into the subject, can pass
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through from capillary into reversible binding site inside the cell through the interstitial fluid region and

the parenchymal cell region [11], [12], [13]. Moreover, in advanced tumor stages, the leakiness around

the tumor vessels is expected to increase, resulting in higher permeability rates during the transportation

of ICG into the compartments.

Bnigsites

(lD)(I Interstitial Fluid Region

Capillaries

SParenchymal Cells

Fig. 16. A simple illustration of the capillary extracapillary structure.

In the three-compartment model, the parenchymal cell and intracellular binding site compartments are

combined to form a single compartment called parenchymal cell. This amounts to the assumptions that the

transition of ICG into the intracellular binding site is negligible as compared to the other compartments

and therefore omitted from the model.

In the two-compartment model, the tumor region is assumed to be composed of two compartments;

namely, the capillary region and ISF [10], [14], [15]. The transition of the ICG to the third and fourth

compartments are assumed to be negligible. Therefore the last two compartments in the four compartment

model is omitted. We consider transcapillary leakage to occur only at the tumor site. We also assume

that a small perturbation of the global plasma concentration does not affect the bulk removal. The block

diagrams of the compartmental transport and chemical model of ICG delivery for four, three, and two-

compartment models are shown in figure 17 (a), (b), and (c), respectively.

The set of differential equations representing the ICG transition between the four compartments are

given as follows:

The leakage into and the drainage out of plasma:

dCp (t)
dt = kbCi(t) - kaCp(t) - koýtCp(t). (3)

The leakage into and the drainage out of ISF:

dC-(t) = kaCp(t) - kbCi(t) - kCi(t) + kdCpC(t). (4)
dt
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(a)
Fig. 17. Block diagrams of the (a) four-compartment, (b) three-compartment, (c) two-compartment models for the ICG

pharmacokinetics.

The leakage into and the drainage out of parenchymal cell:

dCp,,(t)-k
dt = kcCi (t) - kdCpc(t) - kCpc(t) + kfCb(t). (5)

The leakage into and the drainage out of intracellular binding site:

dCb(t) = ke Cpc(t) - kfCb(t). (6)
dt

Physiologically, the equilibrium constants are defined by the permeability surface area products given

as PSp, where P is the capillary permeability constant, S is the capillary surface area, and p is the

tissue density. kout is proportional to the flow rate into and out of the capillary and ka kb, kc , kd, ke,

and kf represent intra-tissue physiologic effects during ICG delivery from capillary to binding site.

The actual bulk ICG concentration in the tissue measured by NIR spectroscopy, m(t), is a linear

combination of the ICG concentrations in four different compartments.

m(t) = vpCp(t) + viCi(t) + vpcCpc(t) + VbCb(t), (7)

where vp, Vi, Vpo Vb, are volume fractions of plasma, ISF, parenchymal cell region and intracellular

binding site, respectively.

The differential equations describing the transitions between compartments for three and two-compartments

models are similar to the four-compartment model and described in detail in [5].
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After compartmentalizing the region around the tumor we developed a mathematical estimation method

to extract ICG kinetic rates. Using these rates one can differentiate between malignant and benign tumors

and/or different tumor stages.

1) Kalman Filtring for the Estimation of Contrast Agent flow Kinetics: We introduce a systematic and

robust approach to model and analyze ICG pharmacokinetics based on the extended Kalman filtering

(EKF) framework. Kalman filter (KF) is an optimal recursive modeling and estimation method with

numerous advantages in ICG pharmacokinetic modeling. These include:

"* Effective modeling of multiple compartments, and multiple measurement systems governed by

coupled ordinary differential equations, in the presence of measurement noise and uncertainties

in the compartmental model dynamics.

"* Simultaneous estimation of pharmacokinetic model parameters and ICG concentrations in each

compartment, which is not accessible in vivo by means of NIR techniques.

"* Recursive estimation of time-varying pharmacokinetic model parameters.

"• Statistical validation of estimated concentrations and error bounds on the pharmacokinetic parameter

estimates.

"* Incorporation of available a priori information about the initial conditions of the permeability rates

into the estimation procedure.

"* Potential real-time monitoring of ICG pharmacokinetic parameters and ICG concentrations in dif-

ferent compartments due to the recursive nature of EKF estimation method.

The details of the extended Kalman filter for simultaneous estimation of pharmacokinetic model

parameters and ICG concentrations in each compartment is explained in [5], [6].

For the optimal compartmental model order selection we adopted Bayesian information criteria (BIC).

BIC is a well known information theoretic criteria, in which the optimal model order is selected by

minimizing a cost function to avoid overfitting. The cost function depends on the number of observations,

number of unknown parameters to be estimated and the maximum likelihood function. A detailed discus-

sion on BIC can be found in [16], [17], [18]. In order to calculate the BIC for different compartmental

models, we first derived a likelihood function for the extended Kalman filter. The derivation is based

on the maximum likelihood estimation of the parameters in the Kalman filtering framework given as in

[19], [20]. We then modified this likelihood function for the extended Kalman filter estimator for the

joint estimation of compartmental model parameters and concentrations. The details of the derivation is

provided in [5].
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Fig. 18. ICG concentrations measured in tissue for four different rats.

B. Aim 2 - Task 3:

The outcome of our research regarding Aim 2, Task 3 are reported in the following publications and

presentation: [5], [6], [7], [8], [9].

1) Fischer Rat Data Analysis: In order to validate the pharmacokinetic modeling of ICG kinetics

we first used the ICG concentration data obtained from four Fischer rats with adenocarcinoma tumors.

R3230ac adenocarcinoma cells were injected below the skin into four Fischer rats 3 weeks prior to

measurements. The tumor size for the rats ranges in diameter from 5 to 30 mm. The ICG concentration

data was collected with an MR-NIR imager. The configuration of the apparatus, the data collection

procedure, and the details of the experimental approach have been reported in [10], [21], [22]..

Figure 18 presents the ICG concentrations (pM) from four different rats. Tumors in Rat 1 and 2

are classified as necrotic because of their low tissue oxy-hemoglobin, low total hemoglobin, and low

gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) enhancement levels. Tumors in Rat 3 and

4 are classified as edematous due to their high water content. It can be observed from figure 18 that the

necrotic cases display low peak ICG concentration values and slowly rising slopes unlike the edematous

cases with high peak values and sharp rising slopes.

We estimated the pharmacokinetic rates for the four-, three- and two-compartment models. The results

are given in tables III, IV, and V, respectively. The estimated pharmacokinetic rates for all compartmental
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TABLE III

FOUR-COMPARTMENT MODEL:ESTIMATED PHARMACOKINETIC PARAMETERS USING EKF ALGORITHM

k(4) (•4) k(4) k(4) k(4) k(4) k(4)

kb k d k fku

(see-'10-2) (sec' 10-2) (seC-110-2) (sec- 10-2) (sec-1 10-2) (se- 1 10-2) (sec- 1 10-3)

Rat 1 (Necrotic) 1.45±0.013 1.22±0.019 1.86±0.017 2.02±0.026 2.74±0.041 2.41±0.051 4.05±0.059

Rat 2 (Necrotic) 3.48±0.048 2.7710.034 4.28±0.048 4.33±0.040 2.98±0.048 3.03±0.061 4.76±0.062

Rat 3 (Edematous) 4.94±0.052 5.16±0.067 4.22±0.052 4.13±0.067 4.14±0.070 4.27±0.078 5.39±0.085

Rat 4 (Edematous) 5.25±0.053 5.31±0.063 5.07±0.068 5.22±0.063 4.43±0.075 4.03±0.072 3.85±0.056

TABLE IV

THREE-COMPARTMENT MODEL: ESTIMATED PHARMACOKINETIC PARAMETERS USING EKF ALGORITHM

ka2 kb3  kc3  kd kou

(see-l10-2) (sec-'10-2) (sec-110-2) (sec-1 10-2) (sec-1 10-3)

Rat 1 (Necrotic) 1.93±0.061 1.28±0.049 1.82±0.032 2.02±0.041 3.89±0.052

Rat 2 (Necrotic) 4.41±0.074 2.48±0.067 4.87±0.066 5.03±0.057 5.45±0.071

Rat 3 (Edematous) 4.71±0.085 3.88±0.077 4.95±0.059 4.68±0.050 4.42±0.040

Rat 4 (Edematous) 5.29±0.091 6.48±0.096 4.48±0.062 4.20±0.048 5.01±0.055

models indicate that the exchange rates between the capillary and the adjacent compartment, kV, k',

n = 2, 3, 4, are significantly different for the necrotic and edematous tissue. We observe that for the

four- and three-compartment models, the estimated exchange rates between the ISF and parenchymal

cell compartments, k1, kV, n = 3, 4, are comparable. Similarly, the estimated rate of drainage out of the

plasma, kout, n = 2, 3, 4, are consistent for all models.

Based on the model parameter estimates, we computed the BIC values for each rat data to reveal

overfitting. The BIC suggests that the two-compartment model is sufficient for all four measurement sets.

We further analyze the goodness-of-fit of the compartmental models by means of the residual analysis.

The details and results explaining why two-compartment model is a better statistical fit is given in [5].

Figure 19 shows the measured total concentration data and its 1-step ahead prediction based on the

two-compartment model for each rat data. Clearly, there is a good agreement between the actual and the

estimated measurements.

As we concluded that the two-compartment model provides the best statistical fit for the rat data, we

investigated the estimated model parameters in more detail.
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TABLE V

TWO-COMPARTMENT MODEL:ESTIMATED PHARMACOKINETIC PARAMETERS AND VOLUME FRACTIONS USING EKF

ALGORITHM

(sec- 1 10-2) (sec- 1 10-2) (sec-'10-3) (10-2) (10-2)

Rat I (Necrotic) 2.47±0.043 1.06±0.052 4.61±0.073 21.8±1.92 1.41±0.053

Rat 2 (Necrotic) 3.54±0.082 2.98±0.086 4.83±0.092 25.4±3.49 2.42±0.088

Rat 3 (Edematous) 6.90±0.101 4.93±0.072 3.95±0.048 30.4±2.81 4.84±0.120

Rat 4 (Edematous) 8.40±0.114 7.77±0.091 4.02±0.068 53.0±4.73 7.03±0.321

Rat2 (Necrotic)
Rat1 (Necrotic)

.Measurement
-A0.5vELI.. Measurement I . Estimation ""08,=-

Estmatio~j"0.04. 0.4o6

ME0o.3
C

) 0.4
8 0.28

_ 0.1

0 0
0 100 200 300 400 500 0 100 200 300 400 500

time (sec) time (sec)
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Rat3 (Edamatous) 2.5 Rat4 (Edamatous)

1.5 .... Measurement .... Measurement

SEstimation E 2tm"i'

.o2 11.5
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2 0.5
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(c) (d)

Fig. 19. ICG concentration measurement data and 1-step prediction of the measurements for four different rats.
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In order to characterize the difference between these two tumors, we estimated the pharmacokinetic

parameters ka, kb and kout, and the volume fractions vp and vi for each rat in the two-compartment

model. Table V tabulates the estimated parameters. The rate of leakage into the ISF from the capillary,

ka, range from 0.0247 to 0.0840 sec- 1 and the rate of drainage out of the ISF and into the capillary, kb,

range from 0.0106 to 0.0777 sec- 1. Note that the permeability rates for the necrotic cases are lower than

the ones observed for the edematous cases. Additionally, the estimated values for the pharmacokinetic

rates are much higher than the normal tissue values due to the increased leakiness of the blood vessels

around the tumor region. The estimated plasma volume fractions agrees with the values reported earlier

[10]. These results confirm that vp can be significantly large in tumors and that its magnitude varies with

respect to the stage of the tumor. The estimated values of ISF volume fraction, vi, range from 0.218 to

0.53, in agreement with 0.2 to 0.5 range reported earlier. Note that these results are valid only for the

ICG pharmacokinetics in tumor cells R3230ac, adenocarcinoma and may not be generalized for other

types of contrast agents or tumor types.

Figure 20 shows the estimated ICG concentrations in the plasma and the ISF compartments for the

two-compartment model for Rats 1 to 4. The peak values of the plasma concentration, Cp, range from

2.72 1uM to 4.28 ptM. The absolute value of the concentrations may not be very useful. However,

concentration of ICG in one compartment relative to the concentration in another compartment may

provide useful information. We consider the ratio of the peak concentrations in the plasma and ISF as

a potential parameter to discriminate different tumors. The peak Cp/Ci ratio for Rats 1 to 4 is 0.551,

0.593, 0.787, 1.151, respectively. This ratio is higher in edematous cases consistent with the fact that

ICG-albumin leaks more into the ISF in advanced tumors. Additionally, the ICG concentration in plasma

decays faster than the ICG concentration in ISF due to ICG elimination through the liver and kidneys.

2) Breast Data Analysis: In order to further investigate the pharmacokinetic modeling of ICG kinetics

we are now working on the data collected from three different patients with different breast tumor

types. First case, Case 1, is fibroadenoma, which corresponds to a mass estimated to be 1-2 cm in

diameter and located around 6-7 o'clock by palpation within a breast of 9 cm diameter. Second case,

Case 2, is adenocarcinoma corresponding to a tumor estimated to be 2-3 cm in diameter and located

around 4-5 o'clock by palpation within a breast of 7.7 cm diameter. The third case, Case 3, is invasive

ductal carcinoma, which corresponds to a mass estimated to be 3-4 cm in diameter and located around

6 o'clock. ICG was injected intravenously by bolus with a concentration of 0.25 mg per kg of body

weight. Diagnostic information for tumors are obtained using biopsy results. Since biopsy modifies the
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Fig. 20. ICG concentrations in plasma, Cp(t) and ISF, Ci(t), for four different rats. (a) Ratl, (b) Rat2, (c) Rat3, (d) Rat4.

blood volume and blood flow around the tumor region, measurements were made before the biopsy. Data

acquisition started before injection of ICG and continued 10 minutes.

In this study, we make use of the data collected with a continuous wave (CW) NIR imaging apparatus.

The apparatus has 16 light sources, namely, tungsten bulbs with less than 1 watt of output energy. They are

located on a circular holder at an equal distance from each other with 22.5 degree apart. Sixteen detectors,

namely, silicon photodiodes, are situated in the same plane. The breast is arranged in a pendular geometry

with the source-detector probes gently touching its surface. Figure 21 illustrates the configuration of the

apparatus and the configuration of the detectors and the sources in a circular plane. A band pass filter at

805nm, the absorption peak of ICG, is placed in front of the sources to select the desired wavelength.

A set of data for one source is collected every 500 ms. The total time for a whole scan of the breast

including 16 sources and 16 detectors is 8.8 seconds. The detectors use the same positions as the sources

to collect the light originating from one source at a time. Only the signals from the farthest 11 detectors

are used in the analysis. For example, when Source 1 is on, the data is collected using Detectors 4 to

14. The details of the data collection procedure and the apparatus is given in [23].
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Fig. 21. The cut section of the 16 light source-detector device, holding a human breast inside. The diameter can be fitted

easily. The 16 light source-detector combinations in each arm are located equal distance (11 degree apart), but when the device

fits the breast, only the diameter chances.

Using the CW imager described above, for each patient, sufficient number of source detector readings

were collected from different angles. Intes et al.[24] reconstructed the differential absorption images using

these detector source readings for 46 different time instants. The details of the reconstruction algorithm

is given in [24]. A sample set of reconstructed differential absorption images for Case 1, for 9 selected

time instants are given in Figure 22.

In Figure 22 each one of 9 reconstructions consist of 649 voxels and each of these voxel values

correspond to a differential absorption coefficient value. Using the the linear relationship between ICG

concentration and absorption coefficient, we get ICG concentration maps from differential absorption

mappings given in Figure 22. A sample set of ICG concentration maps for the selected time instants is

illustrated in Figure 23. Here the concentration maps represents bulk ICG concentration in the tissue, not

specifically in the plasma or the ISF.

ICG concentration curves for each voxel is traced using all reconstructions at different time intervals.

For Case 1, we have 46 reconstructions. We have 649 ICG concentration curves representing 649 voxels

and each of these curves has 46 data points representing 46 different time points. An example of the

ICG concentration curve for the voxel where maximum uptake has occurred is given in Figure 24.

Using two compartmental model , we estimated pharmacokinetic parameters for each voxel using EKF

algorithm. We then constructed 2-D permeability rate mappings using values of these parameters. 2-D

maps for ka, kb for two-compartmental model are presented in Figures 25(a), 25(b).
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Fig. 22. Differential absorption reconstruction maps for the 9 different time instances.
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We then analyzed if the kinetic rates are statistically different for inside and outside of the tumor

region. The ka and kb values from inside and outside the tumor region are statistically different with

a p-value of 0.0001. Using these results one may conclude that spatially resolved pharmacokinetic rate

images can be used for breast cancer screening and diagnosis.

IV. KEY RESEARCH ACCOMPLISHMENTS

The SOW tasks defined for the first 12 months of the project have been completed. In particular,

1) An MR image analysis toolbox was developed. The toolbox performs image segmentation, extrac-

tion of anatomical prior information and co-registration of anatomical and optical images. (Aim 1,

Task 1).

2) Two-level domain decomposition methods has been developed for diffuse optical tomography. The

convergence of these methods are shown. The methods developed give smaller mean square error

with less computational cost than the methods without domain decomposition techniques. The

reconstruction algorithms can be made more efficient with parallel computing. If the tumor region

of the optical coefficients is known by a priori anatomical information, the reconstruction algorithms

become much more efficient and accurate by updating around the tumor region only. (Aim 1, Task

2)

3) The hierarchical Bayesian approach has been successfully applied for the recovery of absorption

coefficients [4] and for the direct recovery of tissue chromophores [2] and has been proven to be

effective in addressing the correlation between anatomical and functional images (Aim 1, Task 3

and 4)

4) Three different compartmental models have been developed for the flow kinetics of the optical

contrast agent ICG. A robust and efficient method that can simultaneously estimate permeability

rates and contrast agent kinetics in various compartments was developed. (Aim 2, Task 1 and 2)

5) The computational models and methods developed were applied to Fisher rat data carrying adeno-

carcinoma and shown that two compartment model is sufficient to characterize the kinetics of the

ICG and to differentiate different tumor types. (Aim 2, Task 2 and 3)

6) A method to construct spatially varying pharmacokinetic rates is developed and is currently being

applied to human breast data. (Aim 2, Task 3)
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V. REPORTABLE OUTCOMES

The hierarchical Bayesian approach has been successfully applied for the recovery of absorption

coefficients [4] and for the direct recovery of tissue chromophores [2].

Two-level multiplicative overlapping domain decomposition method (TMODDM) is applied to the

linearized DOT [52]. With TMODDM as a forward solver, two-level multiplicative space decomposition

method is adopted to the nonlinear DOT in [53], [54], [55]. The convergence and computational costs of

the proposed algorithms are shown in [55]. The reconstruction of diffusion coefficient is shown in [53]

and the reconstruction of absorption coefficients is shown in [54], [55].

Compartmental modeling of ICG pharmacokinetics using a two-compartment model for Fisher rat

data has presented in [6]. Compartmental modeling of ICG pharmacokinetics using four, three, and two-

compartment models and the best model order selection criteria has presented in [5] as a journal paper.

A summary of this work has also presented in [6] and in [8]. Spatial mapping of pharmacokinetic rates

using breast tumors have been presented in [9] Era of Hope meeting for the Department of Defense

(DOD) Breast Cancer Research Program in June, 2005.

Complete list of reportable outcomes is given below:

1) Intes X, Maloux C, Guven M, Yazici B and Chance B 2004 Diffuse optical tomography with

physiological and spatial a priori constraints Phys. Med. Biol. 49 N155-63

2) Guven M, Yazici B, Intes X and Chance B 2005 Diffuse optical tomography with a priori infor-

mation Phys. Med. Biol. 50 2837-58

3) M. Guven, B. Yazici, X. Intes, B. Chance, "3D Diffuse Optical Tomography with a priori Anatom-

ical Information" SPIE-OSA Joint Proc. SPIE Vol. 5138, p. 268-280.

4) M. Guven, B. Yazici, X. Intes, B. Chance, 2003, "An Adaptive V-grid algorithm for Diffuse Optical

Tomography," International Conference on Image Processing, 2, 14-7.

5) M. Guven, B. Yazici, X. Intes, B. Chance, "Recursive least squares algorithm for optical diffusion

tomography," 2002, Bioengineering Conference Proceedings of the IEEE 28th Annual Northeast,

273-4.

6) B. Alacam, B. Yazici, X. Intes, B. Chance " Extended Kalman Filtering for the Modeling and

Analysis of ICG Pharmacokinetics in Cancerous Tumors using NIR Optical Methods", Transactions

in IEEE Biomedical Engineering, In Review.

7) B. Alacam, B. Yazici, X. Intes, B. Chance "Extended Kalman Filtering Framework for the Modeling

and Analysis of ICG Pharmacokinetics," Proc. Of 2005 SPIE Photonic West, San Jose, California
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USA, 22 - 27 January 2005, vol. 5693. pp. 17-27.

8) B. Alacam, B. Yazici, X. Intes, B. Chance "Analysis of ICG Pharmacokinetics in Cancerous Tumors

using NIR Optical Methods," Proc. of EMBS - 2 7th Anniversary Conference, Shanghai, China,

September 2005.

9) B. Yazici, K. Kwon, M. Guven, B. Alacam, " Concurrent MR-NIR Imaging for Breast Cancer

Diagnosis", The Breast Cancer Imaging Network NTROI Annual Network Retreat and Workshop,

Newport Beach, June 2-4, 2005.

10) B. Yazici, B. Alacam, X. Intes, N. Shoko, B. Chance, " Compartmental Modeling of ICG Pharma-

cokinetics for Breast Cancer Tumors" Era of Hope meeting for the Department of Defense (DOD)

Breast Cancer Research Program, Philadelphia, June 8-11, 2005.

11) I1-Y. Son, M. Guven, B. Yazici, and X. Intes, 2004 A 2-level domain decomposition algorithm for

inverse diffuse optical tomography, International Conference on Image Processing, Proceedings of

ICIP, 5, 3315 - 3318.

12) K. Kwon, I.-Y Son, and B. Yazici, 2005 Domain decomposition method for diffuse optical tomog-

raphy, Computational Imaging III, edited by Charles A. Bouman and Eric L. Miller, Proceedings

of SPIE , volume 5674, 64-75.

13) K. Kwon, I.-Y. Son, and B. Yazici, 2005 Two-level overlapping domain decomposition algorithm

for a nonlinear inverse DOT problem, Optical Tomography and Spectroscopy of Tissue VII, edited

by B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, Proceedings

of SPIE, volume 5693, 459-468.

14) K. Kwon and B. Yazici, 2005 Two-level domain decomposition methods for diffuse optical tomog-

raphy, in preparation.

VI. CONCLUSIONS

In the last 12 months, the research project has progressed as planned. Our research demonstrated

that the computational requirements and accuracy of diffuse optical tomography can be significantly

improved by the incorporation of a priori anatomical information provided by MRI. We developed new

compartmental models and estimation methods to analyze the flow kinetics of the optical contrast agent

ICG and applied our approach to Fisher rat data containing adenocarcinoma. Our results indicate that the

flow kinetic parameters can be used to distinguish different tumor types. Currently, we are developing

methods to build spatially resolved flow kinetic images using high temporal resolution NIR spectroscopy
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data. We are in the process of applying these methods to human breast data. These results were presented

in 2005 Era of Hope Meeting, Philadelphia, PA. Presently, we expect the next 12 months of research to

progress in line with the tasks outlined in the SOW.
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Abstract. Diffuse optical tomography (DOT) in the near infrared involves the
reconstruction of spatially varying optical properties of turbid medium from boundary
measurements based on a forward model of photon propagation. Due to the highly
non-linear nature of DOT, high quality image reconstruction is a computationally
demanding problem that requires repeated solutions of both the forward and the
inverse problems. Therefore, it is highly desirable to develop methods and algorithms
that are computationally efficient. In this paper, domain decomposition methods
are introduced to address the computational complexity of the DOT problem. A
two-level multiplicative overlapping domain decomposition method for the forward
problem and a two-level multiplicative space decomposition method for the inverse
problem are developed. We show the local convergence of the inverse solver and derive
the computational complexity of each method. The performance of the proposed
methods in numerical simulations are demonstrated. The convergence analysis and
computational cost analysis of both forward and inverse solvers are provided.
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1. Introduction

Diffuse optical image reconstruction based on the diffusion equation is a highly non-
linear ill-posed problem that calls for the use of non-linear minimization methods with
regularization to stabilize the solution [1].

DOT reconstruction is posed as an optimization problem involving two coupled
steps, namely forward and inverse problems. Each consists of an iterative solver whose
solutions are used as an input to the other solver. More precisely, the forward solver
computes the photon density and its Jacobian with respect to the optical coefficients,
and the inverse solver updates the optical coefficients based on the output of the forward
step. The updated coefficients are then used in the forward solver to recompute the
photon density and its Jacobian. As a result, the computational complexity of the
DOT reconstruction using these approaches, quickly grows with the number of pixels
and dimensions. Thus, real time computation of DOT requires numerical techniques to
reduce the complexity of the problem.

In this paper, we investigate domain decomposition methods(DDM) to address the
computational requirements of the DOT image reconstruction. Domain decomposition
methods have been developed in the last two decades in the area of numerical solutions
of partial differential equations motivated by the need for fast and efficient algorithms for
solving large-scale, three-dimensional problems. A major advantage of the DDM is that
they allow for distributed parallel numerical solvers on smaller subdomains, making the
computation extremely efficient. We applied DDM to the forward problem formulated
by the solution of an elliptic partial equation given optical coefficients and space
decomposition method to the inverse problem formulated as a minimization problem
given boundary measurements. Badea et al. introduced the term space decomposition
to describe the application of DDM approach to the constrained convex minimization
problems arising from variational inequalities and provided conditions under which DDM
based approaches lead to the convergence [4]-[6],[23]-[25]. DDM begins by partitioning
the domain into two or more subdomains as in Figure 1. The inverse problem is then
divided into subproblems on each of the subdomains.

Among many kinds of DDM techniques we have considered the multiplicative
overlapping domain decomposition method (MODDM) for the forward problem and
multiplicative space decomposition (MSDM) for the inverse problem. These methods are
called one-level methods. The proposed methods in this paper are two-level MODDM
(TMODDM) and two-level MSDM (TMSDM) for forward and inverse problems,
respectively.

Since the photon density function is rapidly varying around the point source, the
contribution from the sources may be neglected in the subdomains that are far apart
from the sources. Thus the one-level MODDM is not sufficient to approximate the
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photon density function for the point source, since the subdomain correction step is
confined to each subdomain. Therefore we propose an algorithm based on TMODDM
for the forward solver[21]. The coarse level correction step applied to the entire domain
decreases low frequency errors that are not handled well at the subdomain correction
step. Therefore TMODDM decreases the overall error more efficiently than MODDM.

The use of two-level method is extended to the inverse problem. The convergence of

MSDM is shown in [5] under the some conditions for the objective function F. Among
the conditions, the strong convexity condition for F, that is the positive-definiteness of
the Hessian of F, can be shown only locally. Thus to prove the convergence of MSDM,
we require that the optical coefficients for each iteration step and at each subdomain
must be sufficiently close to the target optical coefficient. In other words, a good initial
guess for the target optical coefficient is required. Therefore, we have chosen upsampled
coarse level image as an initial guess for Algorithm MSDM assuming it is sufficiently
close at least at low frequency.

The paper is organized as follows: In the next section, the forward solver, based on
the photon diffusion equation model and minimization formulation of the inverse DOT,
is described. Algorithms applying domain decomposition techniques to the forward and
inverse steps of the minimization formulation are presented in Section 3. Section 4
presents numerical simulations and Section 5 summarizes our results and conclusions.
The paper includes an appendix for the proof of the local convergence of TMSDM
algorithm.

2. Diffuse Optical Tomography

2.1. Photon Diffusion Equation in Frequency Domain

Propagation of light in biological tissues is well-modelled by the photon diffusion
equation with the Robin boundary condition. In frequency domain photon diffusion
equation is given as follows:

-V •VI)+ (Pa + -W-)D = q in Q•
c

,I) + 2arT = 0 on aQ (2.1)

where Q is a Lipschitz domain in Rl, n = 2,3, 00 is its boundary, v is the unit outward
normal vector on the boundary, 4I is the photon density, q is a source term, and pa, A'8,

andK - are the absorption, reduced scattering, and diffusion coefficients,
respectively. The constant R, is determined by the refraction on the boundary.

The unique identification of the optical coefficients /at and K in (2.1) when Dirichlet-

to-Neumann map is given (or infinite sources and infinite detectors are given), can be
easily shown by using the uniqueness results for isotropic case [22]. For the uniqueness
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of the optical coefficients when r. has anisotropic anomalous region contained in a known
background, see [10, 11, 121.

On the boundary, we measure the following Rytov data [18]:

r = log -(2.2a)

= log I (DI . (2.2b)
(2a )/

[2, 3] show numerical examples where the Rytov approximation provides much better
images than the Born approximation.

In this paper, we assume that g8 is known and concentrate only on the
reconstruction of the absorption coefficient [a. Thus, the Jacobian of F with respect to

[pa for given [' as follows:

OF 2a1 f
( [-3rVG(r, r')V4((r') + G(r, r'),b(r')]dr', (2.3)

where T is the complex conjugate of 1(P.

2.2. Discretization and Finite Element Method

Suppose N8 sources rj, j = 1, ... , N, and Nd detectors ri+N,, i = 1,..., Nd on boundary
of Q? is given. Let (Ij be the solution of (2.1) for point source qJ(r) = J(r - rj),j
1,...,N8 . Define

ri,j = iog("Pi(ri+N.)), (2.4)

for i-th detector and j-th source.
Consider the finite element space with N,, Uk, k Nn1,..., N, bases. For piecewise

bilinear element, Nn is the same as the number of nodes. Let the number of elements
be N, and denote the elements by T, m = 1,..., Ne.

The finite element formulation for (2.1) in this finite element space for the j-th
source qj (j = 1,..., N,) is as follows:

K + C + 1a Alj = bi' (2.5)
2a

where K, C, A are Nn x Nn matrices and bW is a Nn x 1 column vector given by

Kk1 = in VukVW

Ckl = P (La + i') Ukl

Ak1 = j UkT
fop



Two-level Domain Decomposition Methods for Diffuse Optical Tomography 5

1 ifl=j

= {0 Otherwise,

for k, 1= 1, ... , Nn.
Assume that L and U are constants such that 0 < L < U. Define a function space

for Ila as

V = {Ia E L2 (Q)IL < I<Ua(r)1re _ U},

VNe = {l/a E Villa is constant at each Tm, m = 1,. N}.

Define norms in V and VNe as follows:

IIXIIV = IIXIIL2(g) for x E V,

IIXIIVN x(m) for x C VNo,

m=1 ITmI

where x(m) is the constant at the element Tm and ITmI is the area of Tm, m = 1,-.., N,.
Assume that n, pa E VN,. Let I)j (k) be the value of (Dj at k-th node point and

K(m) be the value of r, at m-th element Tm. From the solution of (2.5), we obtain the
boundary measurement data Fi,. By discretizing (2.3), we get the value of the Jacobian
of ]i,j at the m-th element:

a__ 1 g(
"" (in) =- 2aIj(i) D ji(k)[-3 (m)2 ym(k, 1) + Wm(k, 1)]')(l)

k,-k,1=1

Vy(k, l) = fm VUkVT1,

Wm(k, l) = jfn UkT . (2.6)

2.3. DOT as a nonlinear ill-posed optimization problem and the trust region method

Given (2.1) and (2.6), DOT is formulated as the following nonlinear minimization
problem to determine the absorption coefficient pa in VNe:

min,•IaEvN F(Aa), (2.7)
1N. Nd Ne

F(ia) = 2 5 (rI,j(P-a•) 2 + / Ia(M)2 ,
j=1 i=1 m=1

where MAj, are measured data at the i-th detector and the j-th source, and a is a
regularization parameter.

Although the uniqueness of pa ( and p' ) is known for infinite sources and detectors,
the unique solvability of (2.7) for finite sources and detectors is not known leading to the
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ill-posedness of the DOT problem. To address this ill-posedness, nonlinear optimization
such as Newton method is employed.

The optimization problem in (2.7) is composed of two steps; the step to determine

the minimizing direction at the current coefficients [a and the step to perform line search
on those minimizing directions. In the Newtonian method, the minimizing direction is
-(F")-'F', where F' and F" are the Jacobian and the Hessian of F with respect to Aa.
In the classical Newton method, searching direction is found by computing F" directly.

However, this method requires extensive computation and is unstable. To decrease
complexity of the computation, in quasi-Newton methods, F"` is approximated by
various computationally efficient methods such as the Davidon-Fletcher-Powell method,
the Broyden-Fletcher-Goldfarb-Shanno method, and the conjugate gradient method [7].
To stabilize the computation, F" + AI is used in place of F" in the Levenberg-Marquadt
method [16, 17].

In this paper, we adopted the trust region method, a variant of Newton approach,
as an optimizer. The trust region method solves the following quadratic minimization
problem: 2 1mmi {SIa E W, HDiDiaH < T ~(e[Lta)tFII(ia)6I~ta + (Siia)tF'(jLa) } (2.8)

where D is a scaling matrix, T is a trust region parameter, and W is a subspace of V.
The scaling matrix D is used to handle constraints for the minimization. To stabilize the
minimization, we control the trust region parameter T, which is similar to control the
A parameter in the Levenberg-Marquadt method [7]. To avoid extensive computation,
the subspace W is chosen as the two-dimensional subspace composed of the gradient
direction and the approximate Newton direction [9]. This makes the trust region method
suitable for large-scale constrained optimization problems like the one state in (2.7).

Taking vanishing gradient point of the quadratic form 3(Ia)F(I•) I• +
(3ia)t F'(t5/a) in (2.8), we get

(J t (Sia)J(J11a) + aINe) 1A = -(J(ia) t b(.a) + q•la). (2.9)

Thus, if assume that Jpa is sufficiently small, the trust region method can be used to
solve (2.8) at each iteration.

3. Two-level Domain decomposition methods for the diffuse optical
tomography

In this section, we describe the two-level domain decomposition methods considered in
this paper, as applied to the forward and inverse problems. These two methods are
composed of the coarse level and the subdomain correction steps. We will describe our
notation and approach for the two-dimensional optical domain Q = [a, b] x [c, d] C ]R2

and bilinear finite element. Its extension to three-dimensional domain is straightforward.
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Let -N.,Ny be Q uniformly divided by N, times in the x-axis direction and Ny times
in the y-axis direction. Thus Qgx,Ny has Nn = (N + 1) x (N,+1) nodes and N, = Nx x Ny
elements. We call QNx/2,Ný/2 the coarse level of Q2 NZ,N, assuming Nx and Ny are even.
Let QNX,N, be decomposed into disjoint union of d subdomains Qp, p = 1, ... , d such
that

d

S= U[. (3.10)
p=l

(3.10) describes the nonoverlapping domain decomposition. For the overlapping domain
decomposition, we define E, p = 1,... ,d, an extension of Qp, recursively for all
nonnegative integers w as follows: -° = QP and QP- is the union of QW-1 and its adjacent
elements in contact with the boundary of Q,-, where w will be called the overlapping
width. Thus the overlapping domain decomposition is given by

d

=Nx,N= U Q" (3.11)
p=l

3.1. Two-level Multiplicative Overlapping Domain Decomposition Method for the

forward problem

In the forward solution of the DOT problem, one has to compute the photon densities
satisfying (2.1) and its Jacobian. Commonly used methods are the finite element method
in (2.5) and the adjoint method (2.6). We apply TMODDM to (2.5) in order to reduce
the computation complexity of the problem. TMODDM composed of two steps: the
coarse level correction and the subdomain correction steps.

In the subdomain correction step, we use MODDM. Let I)n be the n-th step solution
of TMODDM and (Dn+d+l be the updates via coarse level correction to be presented
below. Then the updates I+- at p-th subdomain Q is obtained by

__+ in (Dn (3.12)
I- = i+d+1 in \Q 'E

where v is the solution of the following partial differential equation:

-V. (tiVv) + ([Pa + -)v == q in ' (3.13a)

19nO wflQ,+2aD = 0 onav, (3.13b)

v = (1pn+d+-l on YQa' \ 9Q. (3.13c)

We call the coarse level correction step combined with MODDM TMODDM. In the
coarse level correction step, an important point is to define the interpolation operator
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P : QN./2,Ny/2 -+ Nx,Ny and restriction operator R : -Ný,Ny --+ QNx/2,Nj/2 between the
functions defined at the node points in QNg/2,Ny/2 and QNg,Ng.

We use bilinear interpolation operator P and full weighting restriction operator R,
having the following symbols:

(1/4 1/2 1/4 1 T

1/2 1 1/2 ,and R=
1/4 1/2 1/4,4

where pT is the transpose of P[8, 24]. At the boundary, P and R has the symbol
(1/2 1 1/2) boundary is a one-dimensional line.

Let the maximum sweep of all subdomain corrections followed by the coarse grid
correction be MF. A pseudo-code summarizing the Algorithm TMODDM to solve (2.5)
at QN.,N• is given as follows:

Algorithm 1 TMODDM
for j = 1.. .N, + Nd do

Initialize 4D9
for n = 1... MF do

= R ((K + C ± -LA)I,' n-1 -b), r3 E QN./2,N,/2 {Restrict the residual.}
ej (K + C + -A)-lrj, ej, r3 E N.g/2,N,/2 {Coarse grid correction.}

n-l+ 1
(D+ d1 P(ej), P(ej) E £N.,NV

for p =1,...,d do
Update .Hd+• 1 at Q by (3.12) {Subdomain correction.}

end for
end for

end for
Compute Frj and Ei (m), m = 1,... ,N using (2.4) and (2.6). {Post-processing}

3.2. Two-level multiplicative space decomposition method for the inverse problem

In the forward problem, we obtain the value of photon density at each nodes. Whereas
in the inverse problem, we are interested in the value of the optical coefficients at each

element. It is possible to define different domain decomposition schemes for the nodes
and elements in the forward and inverse problems. In this paper, however, we use the
same domain decomposition scheme for both problems. For the domain decomposition
(3.10) and (3.11), let the restrictions of VNe to the overlapping subdomain QU) and
nonoverlapping subdomain QP be VNv and WNP. for p = 1,... d, respectively, such that

VN = {x E VNIX = 0 on \Q y}, (3.14a)



Two-level Domain Decomposition Methods for Diffuse Optical Tomography 9

WP = Ix E WNgIX = 0 on Q \ f '--}. (3.14b)

TMSDM composed of two steps: The coarse level correction and the subdomain
correction steps.

The subdomain correction step uses the algorithm MSDM which is given below: Let

Po be the initial guess for optical coefficient on QN.,NV. Define [al+p/d as the n-th update

of the optical coefficient in the p-th subdomain. Then given p[a d E VN, p d,
,I n+Ed

compute _[ a d such that

S a = argmin n+5 p n. ,-1 . n+J 1 ÷a o ), (3.15)8[t-a EVkp ,*--+9• a E VN,

and update

[ Pa =/+ + P (3.16)

The convergence of MSDM is proved under some conditions on the objective function F
[5]. We have proved the convergence of MSDM in Theorem 1 when approximating the
[/a in each iteration is sufficiently close to the true [L. As a result, the convergence of the
MSDM is assured when the initial guess is sufficiently close to the true Pa- Motivated
by the Algorithm TMODDM, we applied a two-level approach to the MSDM by using
the coarse level solution as an initial guess. For the present work, we assume that the
coarse level solution is sufficiently close to the true image of the absorption coefficient.

To use the coarse level solution in the finer level as an initial guess, we adopted
an upsampling operator U from the coarse level to the fine level. Let y be a function
defined on N,/2 x Ny/2 elements on the coarse level, then U(y) is a function defined on
each N. x Ny elements on the fine level such that

U (y) (2m., - 1, 2my - 1) = y (mý,,my), U (y) (2mý, - 1, 2my) = y (m,;,my),

U (y) (2mý,,2my - 1) =y (m.,,my), U (y) (2m,,,2my)= (xm)

for I< _ < Nx/2, 1 < m <_ N/2.
Let Mc and Ms denote the number of sweeps for the coarse and subdomain

corrections. A pseudo-code summarizing the Algorithm TMSDM is given as follows:
Assume that we know the location of the anomalous region is contained in some

small region by a priori information provided by a secondary imaging modality such as
MRI or X-rays or by a posteriori information after the coarse level correction step. Then

instead of performing the subdomain correction step on all of the subdomains, we can

update [,a on a region of anomaly. The convergence of the algorithm when implemented
only for a region of interest does not change if the initial guess of the optical coefficient

is sufficiently close to the true image of the coefficient.
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Algorithm 2 TMSDM
FC = log(R(exp(F))) {Restrict boundary measurements.}

for i = 1, .. .,Me do
Solve (2.8) on the coarse level from the boundary measurement data [',3 to
approximate j, {Coarse level correction.}

end for

for p = 1,...,d do
for k= 1,...,Ms do

Solve (3.15) from the measurement data ri, and elaborate /[a on Qw by (3.16)

using Algorithm 1 as a forward solver {Subdomain correction.}
end for

end for

3.3. Convergence of TMODDM and TMSDM

In this subsection, we will discuss the convergence behavior of the proposed algorithms.
Assume that the mesh size of the finite element formulation is O(h) and that the

subdomains are of diameter O(H) and the overlap region is width O(6H). Then the
following convergence behavior is known for the Algorithm TMODDM [20, 19].

* Convergence is poor if J = 0 but improves rapidly as 5 increase. (3.17a)

* If 5 is fixed, the number of iterations is bounded independent of h, H

and H/h. (3.17b)

* The number of iterations for the multiplicative Schwarz method is

roughly half of that needed for the additive Schwarz method. (3.17c)

The local linear convergence of the Algorithm MSDM is shown below using the results
in [5].

Theorem 1 Let p are the n-th step MSDM approximation of ya. Assume that

III• - Ia V :N 5(q = 0,''', n) for sufficiently small 6. Then, we have

I1Inp - I'LaHVN • Ci (CI)IF(IL°) - F(ita)1, (3.18)

where C, is a positive constant and C2 is a positive constant less than 1. (See appendix
for the proof of Theorem 1).

3.4. Computational cost of the Algorithms

In this subsection, the computational cost of the proposed Algorithms will be estimated
when solving (2.5) and (2.9) for the forward and inverse problem, respectively. We will
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call, the method solving (2.5) and (2.9) without any domain decomposition, non-DDM
compared to the proposed method. The system matrices for each equation are Nn x N"
and N, x Ne, respectively. Assume that we require O(Nn) and O(NP) floating point
operations for each equation with non-DDM. For full nonzero matrix we must take
p = 3 and for usual non sparse matrix we can take 2 < p _< 3. Suppose that we use d
subdomains with equal nodes and elements for the proposed algorithms.

The coarse level computation needs 4-P times (in two-dimension) or 8-P times (in
three-dimension) less computation than the fine level computation for the forward and
inverse solvers. Thus if we neglect the coarse level computation, the computational
cost of the Algorithm MODDM is MFd1-P (for one computer) and MFd-P (for d
parallel computers) times that of non-DDM method, for one computer and for d
parallel computers, respectively. It is well known that the number of iterations MF
is bounded independent of Nn, d and N,,/d by (3.17) and TMODDM gives a good
convergence behavior with smaller MF than MODDM. Thus we have chosen ME = 3
when TMODDM is used in the inverse solver in Section 4.2. Thus, by using multiple
subdomains, the Algorithm TMODDM can achieve significant decrease in computational
requirements.

The total computation costs for non-DDM, the Algorithm TMSDM with forward
solver the Algorithm TMODDM in case of one computer, d parallel computers, and
d2 parallel computers are tabulated in Table 1. When we use d parallel computers,
the parallel computing is applied to the inverse solver only, whereas when we use
d2 computers, the parallel computing is applied to the inverse and forward solvers
simultaneously. Note that this comparison for the inverse solver is based on the
assumption that the speed of data communications between parallel computers is
sufficiently fast. The parallel computation is not treated in this paper, but the proposed
algorithm combined with the parallel computing will lead to much more efficient results.

4. Numerical Simulations

In this section, we will test the efficiency of the two algorithms: Algorithm TMODDM
for the forward problem and Algorithm TMSDM for the inverse problem using simulated
data.

The following are the parameter values chosen for the numerical simulations.

S14 = 8cm-1, background ta = 0.05cm- 1,

tumor/[a = 0.2cm- 1, w = 27r * 10OMHz,

c = 3 * 1010cm/sec, a = 1.

In Figure 1(a), the thin lines represent 20 x 20 fine level and thick lines represent
10 x 10 coarse level for Q = [0, 6] x [0, 6]. The 2 x 2 domain decomposition and 4 x 4
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domain decomposition with w = 1 are shown in Figure 1 (b) and (c). 3 x 1 domain
decomposition for Q = [0, 9, 6] x [0, 4.8] with 24 x 18 node points is shown in Figure 1
(d).

4.1. Algorithm TMODDM

In this subsection, we consider Algorithm TMODDM in Figure 1, Table 2, and Table
3. Let Q = [0, 6] x [0, 6] be divided into 20 x 20 square elements. The distribution of Pa

is shown in Figure 2(a), where the white region is the background with [a = 0.05cm-1
and the black region is the anomaly with absorption coefficient Pa = 0.2cm-1. Let
the location of the source be (6, 3). The solution of (2.5) by UNPACK is in Figure
2(b). The L2(Q) errors for the photon density between UNPACK solution and the
solution of the proposed method, are displayed in Figures 2(c)-(e), Table 2, and 3. In
Table 2, the error for one-level and two-level MODDM is compared as the number of
iterations increases for 2 x 2 subdomains as in Figure 1(b). Although TMODDM 4-P
more computation than MODDM, the convergence behavior of the proposed method for
each iteration is remarkably good as compared to the one-level method. In Table 3, the
effect of the number of subdomains and the width of overlapping region is tabulated.
As the width gets larger, the error decreases with a few exceptions. This verifies the
convergence result of (3.17a). In Figure 2(c),(d), and (e), the L error is shown after
5 iterations, after the coarse level correction after 5 iterations, and after 6 iterations,
respectively. The errors for each step are 2.51 x 10', 8.95 x 10-10, and 8.31 x 1011,
respectively.

4.2. Algorithm TMSDM

In this subsection, we evaluate the performance of the algorithm TMSDM using
simulated data and Algorithm TMODDM as a forward solver. The results are shown in
Figures 3-5. The reconstruction of diffusion coefficient K for known [,a is investigated in
[13]. In this paper, the reconstruction of /[t is implemented when ['L is given as in [14].

Algorithm TMSDM is implemented for various parameters including type of domain
Q, p[L, source and detector locations, and the Tikhonov regularization parameter. As
a forward solver, we have used the Algorithm TMODDM with maximum number of
iterations set to 3. And if we know the approximate location of tumor a priori, we
only updated /[t only on some small region of interest instead of all subdomains of Q in
inverse solver.

The maximum number of iterations for the coarse level correction, the subdomain
correction, and non-DDM is 10, 5, and 10, respectively. As shown in Table 1, the
computational cost of the proposed method is less than that of non-DDM. Figures
??(a), 4(a), and 5(a), show the domain Q and [La images used in simulations. Figures
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3(b), 4(b), and 5(b), the location of the sources and detectors. 'o' and '*' mark the
location of sources and detectors, respectively. Figures 3(c)-(e), 4(c)-(f), and 5(c)-(e),

show the reconstructed images of /ta for various parameters and the L2 (Q) norm error
between the original pa and reconstructed [a.

In Figure 3, we considered Q = [0, 6] x [0, 6] domain divided into 400 pixels with
N, = Ny = 20. We choose 2 x 2 subdomains of the same size with overlapping width
1 as shown in Figure 1(b). Figure 3(a) shows the original image of [a. 20 sources
are interweaved with 20 detectors located on the boundary as shown in Figure 3(b).
The image is reconstructed using the Algorithm TMSDM. In Figures 3(c) and 3(d),
the reconstructed images are shown for Tikhonov regularization parameter a = 0 and

10-2, respectively. As compared to the image with no regularization, the image with
a = 10-2 appears sharper and the L 2( () norm error is decreased from 0.145 to 0.129.
The reconstructed image for the non-DDM after 10 iterations is shown in Figure 3(e).
The boundary of the anomaly does not appear clearly and the image of anomaly is larger
than the original image, and the L2 (0) error is larger than that of the DDM approach
shown in Figure 3(d).

In Figure 4, the same domain Q, pixels, subdomains, and source and detector
locations are considered as in Figure 3. But the anomaly of /[a is located at the upper
right quadrant of Q as shown in Figure 4(a). The reconstructed images using Algorithm
TMSDM with a = 0 and a = 10-2 are shown in Figure 4(c) and Figure 4(d). The
reconstructed image when /ta is updated only in 4-th subdomain is shown in Figure
4(e). The reconstructed image for the non-DDM is shown in Figure 4(f). The L 2( ()
error becomes smaller when we use a = 10-2 in Figures 4 (d)-(f) compared to a = 0 in
Figure 4 (c). As compared to Figure 4 (d), when we only update the 4-th subdomain, the
error in Figure 4 (e) decreases significantly. Thus if a priori or a posteriori information
about the location of tumor is available, it is possible to obtain more accurate and faster
reconstruction as shown in Figure 4(e) rather than Figure 4(d). The reconstructed image
for the non-DDM in Figure 4(f) is somewhat blurred and the boundary is not so clear
as compared to the images obtained using Algorithm TMSDM.

In Figure 5, we considered a thin slab geometry with Q = [0, 9.6] x [0, 4.8] divided
into 288 pixels with N, = 24 and Ny = 12. We have choose 3 x 1 subdomains of similar
size with overlapping width as shown in Figure 1(d). 13 sources on the bottom and
13 detectors on the roof of Q are located as shown in Figure 5(b). The reconstructed
images with a = 0 and a = 10-2 are shown in Figure 5(c) and (d). Figure 5(e) is
the reconstructed image with non-DDM. The reconstructed image with regularization
shown in Figure 5(d) has smaller L 2( () error than the one without any regularization
shown in Figure 5(e). As in Figure 3 and 4, the reconstructed image for the non-DDM
shows blurred boundary of the anomaly.
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5. Conclusion and discussion

We presented Algorithm TMODDM and Algorithm TMSDM for the forward and the
inverse problem solution of DOT. The algorithms of these two methods are explained
and their convergences are shown. Numerical implementations of the algorithms are
presented for various parameters such as geometry, source-detector location, Tikhonov

parameter, the number and width of subdomain. For Algorithm TMODDM, the forward
solver, as overlapping width grows the convergence becomes better for the 4 and 16
subdomains, and the iteration number for the proposed method decreases fundamentally
compared to the one-level method. For Algorithm TMSDM combined with Algorithm
TMODDM, Tikhonov parameter 10-2 produces less L2 (Q) error for the absorption
coefficient than other Tikhonov parameters. The images of the coefficient by non-
DDM are blurred and makes higher L2 (Q) error than the proposed method. Using
Algorithm TMSDM in a region of interest produces better quality images and less error
as compared to the Algorithm TMSDM applied in all subdomains.

The computational costs for the two-level methods are compared among non-DDM,
the proposed method in 1, d, and d2 parallel computers, where d is the number of
subdomains. Thus, with the aid of parallel computing for d2 computers, the proposed
approach speeds up the computation with d-P times as compared to the non-DDM,
where usually p is between 2 and 3 depending on the system matrix size and matrix
solver. If a region of interest is determined in some subdomain by a priori information
obtained from secondary imaging modality such as X-ray, CT, MRI or a posteriori
information from a coarse level image, Algorithm TMSDM can be implemented in the
region of interest resulting in a d-P speed-up of computation only in d computers.

6. Appendix: the proof of Theorem 1

More detailed proof of the Theorem in general case including the concrete definitions of
Jacobian and Hessian, and their error estimates, will be studied in [15]. In this appendix,
we use absolute intensity F = 1 as a measurement data for real valued 4) instead of
log intensity in (2.2), and assume that n -, which means = 0.

For i-th source ri, j-th detector rj and elements Tk and TI, let bij = ['j ([a + J/Ita) -

Fij (/[a). The Jacobian matrix J and Hessian tensor H at a given Pa are given by

J(Pa)[6[1a](ij, k) = JTk G(ri, r')G(r', rj)S a(r')dr'

H(PLa) [6[a, i[La](ij, k, 1)

- JTk f G(ri, r')G(r', r")G(r",rj)•6[a(r') 6[a(r")dr'dr"
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where G(., rj) is the Green function for [a and a point source rp. Define

II J1 max IJ(ij, k)l • sup IG(, r)IIL2(a) IalLoo(),

IHIn := max JH(ij, k, 1)1 < sup IG(., r)•(a) 1', aIILI2
i~j~k~lrEN

Lemma 2 Assume that J/a is small enough to satisfying IIHII JII 1I11LO(n) 2

and supr IlkG(., r) L2(a)< 2suprEa JIG(.,r)1 2 (a) where G(.,r) is the solution of (2.1)

for the absorption coefficient pa + 6 /ia. Then F" satisfies

O2 VI'aINo< (J/-t)'F" (x) (5p.). (6.19)

Proof F' and F" are computed as follows:

F'(Pia) = J(p.a)tb(Pa) + OLIta,

F"(/ia) = J(/ia)tJ(/ia) + H(/ia)b(/ia) + a4.

By Born expansion

b= IG(ri+N,, rj) -G (ri+N,r)I Ij) G(ri, r') (r', r)61-a1

where d is the solution of (2.1) for /a + 6/ia. Using the assumption and the definition
of J, we get IbijI < 2 IL' IJJpaIILn(Q). Therefore we get

a •1a1 ae - 3IIgH(/a)J IlJ(/a)I) II6IaILL-(c) I I jlaIIv1

_ (61/a) t F"(i.a)6/ia. (6.20)

Thus we have proved the lemma.

The inequality (6.19) is called local strong convexity. With this property and
the theorem in [5], we prove Theorem 1 for 6 is sufficiently small such that 6/ia =

pq - mua, q = 0,..., n satisfies the assumption of Lemma 2.

Proof of Theorem 1 The proof of Theorem 1 is the modification of the proof in [5].
By (3.14),

VNe = Vl +..+ V = Wk +...+ W

and WN, p = 1,..., d are mutually disjoint and WJN C V•. And let and /iaf+k/d

be the minimizing solution of TMSDM at n-th step and p-th subdomain Qw. Define

zn = (Pa - Pa d )P (- WN, and en+p/d = d - Pa d Ve. Then we get

[a /a• = /Ia z, Ia- • vN = ( IIZv, (6.21)

P=
1 p=1
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and

e+ =arg miIvPEvN,,F(pLa d + Vp). (6.22)

(6.22) implies

(F'(Pan+Y +e+), Vp - e+ >_ 0 for all vp VNP. (6.23)

Using (6.19) and Taylor expansion for F we get

F(w) - F(v) >_ (F'(v), w - v) + a-11W _ V112 (6.24)

for all v,w e VNe such that Jjv- WHjvN, < 5. Taking vp = 0 in (6.23) and inserting
Pa d a+- and v = Pa+ we get

Fpn+_) - , Fpn+) C' "Ien+P-1 >_ 0W=Ipa d )- d

4 VNý P

and
d

F(pan) - F(Pa n--) : E (F([a a +)- F(tan+P))

p=
1

d 2
o 1 IIn+P 11I 0d[N,>0 (6.25)

p=1 VNJ

Inserting w = La and v = pa into (6.24), we get

F(pan) - F(Ipa) (PF'(pa), Pta [a + Pa I [L e

a H/Ia n _ Pa H1V2 > 0. (6.26)

Finally we get

0 < F(pi n+ 1 ) - F(Ita) <_ (F'([pan+), [an+l - p[a) (using (6.24))

= (Fn(pAan-1), - +} "an - [a) : <F(panle-l -n Zp

•< S KF'a P d'(a _d+) +- z'n) (using (6.23))
P= 1

d d

= d1 (F' ( an+d) - F'(11an d) n Zp-

p=1 /=p+l

d d

p=1 /=p+l

for some yjf which lies between [La2+- and [La +d
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VCe ( ln e12 12 d n+P Le)/2
Ved EZ 1 d- Z~ lN (using (6.19))

P=1 p=l

!5 2(F(p•an) - F(Pa•+ 1 )) + 2VF(Iian) - F(#an+l) \/F(iian) - F(lla)

(using (6.21), (6.25), and (6.26)).

Let d, = F(it n) - F(pa), then the above equation and Cauchy-Schwarz inequality

implies

dn+1  •2(dn-dn+i) + 2Vdn-dn+l@/d

< (2+ +)(dn - d.+,) + 2pdn,

for all / > 0. Thus we get

d,ý+j < 4p 2 + 4p + 1 (6.27)
dn - 6p + 1

The left hand side of (6.27) takes minimum value - < 1 when p = . Thus if we take
C1= , and C2= 8, Theorem 1 is proved.
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Method Computational cost

non-DDM O(N.) + O(NP)
TMSDM on 1 computer MFdl-PO(N,) + dl-PO(Nf)

TMSDM on d computers MFd'-PO(NP) + d-PO(NU)

TMSDM on d2 computers MFd-PO(N.P) + d-PO(NP)

Table 1. The comparison of the computational costs for the non-DDM method,
TMSDM for one, d, and d2 computers.

Method\ Iteration 1 2 3 4 5 6
one-level .318e-01 .148e-02 .555e-03 .143e-03 .235e-04 .254e-05
two-level .236e-01 .466e-03 .717e-05 .104e-06 .251e-08 .831e-10

Table 2. The comparison of L2 error with respect to the LINPACK solution, which
is shown in Figure 2(b), for one-level and two-level MODDM, as iteration increases.

Subdomains \ Iteration 1 2 3 4 5 6
2 x 2 subdomains, width 1 .236e-01 .466e-03 .717e-05 .104e-06 .251e-08 .831e-10
2 x 2 subdomains, width 2 .248e-02 .306e-05 .553e-07 .204e-09 .478e-12 .529e-14
2 x 2 subdomains, width 3 .195e-03 .218e-06 .10le-09 .571e-13 .167e-15 .163e-15
4 x 4 subdomains, width 1 .237e-01 .482e-03 .808e-05 .208e-06 .894e-08 .185e-09
4 x 4 subdomains, width 2 .329e-02 .106e-04 .503e-06 .209e-08 .351e-10 .327e-12
4 x 4 subdomains, width 3 .706e-03 .231e-05 .440e-08 .136e-10 .107e-13 .181e-15

Table 3. The effect of multiple subdomains and overlapping width to the convergence.
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Figure 1. (a) The lattice of thin lines is 20 x 20 mesh of Q = [0, 6] x [0, 6], and thick

lines represents the coarse level of Q, (b) 2 x 2 domain decomposition of Q2 = [0, 6] x [0, 6]

with 20 x 20 mesh, (c) 4 x 4 domain decomposition of 0 = [0, 6] x [0, 6] with 20 x 20

mesh, (d) 3 x 1 domain decomposition of Q = [0, 9.6] x [0, 4.8] with 24 x 12 mesh.
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Figure 2. (a) is the image Of Pa. The white region represent background tissue
with value O.O5cm-1 and the black region represent anomaly which have O.2cm'1

absorption coefficient. The photon density with point source at (6,3) solved by
LINPACK is depicted in (b). The error between LINPACK solution and the result
after 5th iteration, coarse level after 5th iteration, and 6th iteration attained from
Algorithm TMODDM is presented in (c), (d), and (e), respectively.
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Figure 3. The reconstruction of absorption coefficient using Algorithm TMSDM on
Q = [0, 6] x [0, 6] with 2 x 2 subdomains, 20 detectors, 20 sources, and 400 pixels
(a)The image of p,, to be reconstructed. White region represent background tissue
with p,,= 0.05cm-1 and black region represent anomaly with p,, = 0.2cm-1 (b)The
location of 20 sources and 20 detectors (c)The reconstructed image of the absorption
coefficient with no regularization using Algorithm TMSDM resulting in L_2 norm error
0.145 (d)The reconstructed image of the absorption coefficient with a = 10-2 using
Algorithm TMSDM resulting in L_,2 norm error 0.129 (e)The reconstructed image of
the absorption coefficient with a = 10-2 for non-DDM resulting in L,2 norm error 0.142
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Figure 4. The reconstruction of the absorption coefficient on Q [0, 6] x [0, 6] with
2 x 2 subdomains, 20 detectors, 20 sources, and 400 pixels. (a) The image of /J.' to
be reconstructed. White region represent background tissue with /J., = 0.05cm-1 and
black region represent anomaly with •A, = 0.2cm-'. (b) The location of 20 sources and
20 detectors (c) The reconstructed image of the absorption coefficient using Algorithm
TMSDM with a = 0 resulting in L,2 norm error 0.0949 (d) The reconstructed image
of the absorption coefficient using Algorithm TMSDM with a = 10-2 resulting in
L2 norm error 0.0824 (e) The reconstructed image of the absorption coefficient using
Algorithm TMSDM only on fourth subdomain with a = 10-2 resulting in L2 norm
error 0.0755 (f) The reconstructed image of the absorption coefficient for non-DDM
with a• = 10-2 resulting in L2 norm error 0.0926
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Figure 5. The reconstruction of absorption coefficient on = [0, 9.6] x [0, 4.8] with

3 x 1 subdomains, 13 detectors, 13 sources, and 288 pixels. (a) The image of a, to

be reconstructed. White region represent background tissue with Aa = 0.05cm- 1 and

black region represent anomaly with pa = 0.2cm-1. (b) The location of 13 sources and

13 detectors (c) The reconstructed image of the absorption coefficient using Algorithm

TMSDM with a = 0 resulting in L2 norm error 0.156. (d) The reconstructed image

of the absorption coefficient using Algorithm TMSDM with a = 10-2 resulting in

L2 norm error 0.138. (e) The reconstructed image of the absorption coefficient for

non-DDM with a - 10-2 resulting in L2 norm error 0.141.
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ABSTRACT one sub-problem, initialized with the solution from the last itera-
tion, is solved, whose solution is then used to initialize the nextIn this paper, we explore domain decomposition algorithms for sub-domain and so on. We follow the multiplicative Schwarz al-

the inverse DOT problem in order to reduce the computational gorithm using a fixed number of CG iteration to approximate thecomplexity and accelerate the convergence of the optical image solution for each sub-domain. For full explanation of Schwarz al-

reconstruction. We propose a combination of a two-level multi- golionms e [1, 2].

grid algorithm with a modified multiplicative Schwarz algorithm, gorithms see [1, 21.

where a conjugate gradient is used as an accelerator to solve each Single level Schwarz algorithms are not well suited for prob-
sub-problem formulated on each of the partitioned sub-domains. lems exhibiting low frequency errors and suffer from low conver-
For our experiments, simulated phantom configuration with two gence rate. Multi-grid methods, on the other hand, use a hierarchy
rectangular inclusions is used as a testbed to measure the compu- of grids at different scales to accelerate the convergence of stan-
tational efficiency of our algorithms. No a priori information about dard iterative methods. The fundamental idea behind all multi-grid
the configuration is assumed except for the source and detector lo- methods is to combine computations done on different grid scales
cations. For the application of our modified Schwarz algorithm in order to eliminate the error components of the finest grid, where
alone, we observe an increase in efficiency of 100% as compared the original problem has been formulated. This is achieved by ap-
to the conjugate gradient solution obtained for the full domain. proximating the smoothed fine grid error on a coarser grid where
With the addition of the coarse grid, this efficiency rises to 400%. it can be accurately represented. The approximated error on the
The coarse grid also serves to improve the overall appearance of coarse grid appears to be more oscillatory, hence can be further
the reconstructed image at the boundaries of the inclusions, eliminated by the iterations on the coarse grid. The solution ob-

tained for the error on the coarse grid is then interpolated to the
fine grid to correct the current fine grid solution estimate. There

1. INTRODUCTION is no unique way of formulating an inverse problem in a multigrid

framework. The formulation needs to be specific to the problem atInverse diffuse optical tomography (DOT) problem involves es- hand, that is it must be tuned to address the requirements asserted
timation of the optical properties of biological tissues, which are in the problem. Note that, carefully designed multi-grid solvers
pertinent to tissue's physiological and biochemical state. The most have the potential of solving inverse problems with N unknowns
prominent applications of DOT are in detecting tumors in the breast, within O(N) work load [3], which makes them the most efficient
monitoring brain activity, and detecting brain tumors and hemor- solvers for many kinds of mathematical problems.
rhages.

DOT poses a computationally challenging inverse problem. Multigrid methods have been applied for the DOT problem
Thereby, realization of real-time diffuse optical tomographic imag- in the past, where the inverse problem is formulated on a hier-
ing requires computationally viable reconstruction algorithms that archy of regular rectangular grids [4]. Domain decomposition
provide accurate quantitative results. In this work, we address the has also been previously proposed for Bayesian formulation of in-
computational complexity of the inverse problem by proposing a verse DOT problem [5]. However, the nature of the decomposition
two-level domain decomposition procedure. Domain decomposi- was different in that work, where non-overlapping, and hence non-
tion methods convert the inverse problem into smaller-size prob- Schwarz type, "sliding window" decomposition was used. In our
lems that are easier to handle. Herein we apply a modified alter- previous work, we have proposed Fast Adaptive Composite-grid
nating Schwarz method with conjugate gradient (CG) algorithm (FAC) algorithms for Region-of-Interest DOT [6, 7], which implic-
as the iterative solver to accelerate the solution. We then extend itly pursued a domain decomposition with the aid of a priori infor-
the uni-level problem formulation to a 2-level problem to include mation about the medium of interest. Note that FAC can be viewed
a coarse grid correction in an attempt to improve quantitative ac- as a Schwarz-like domain decomposition method in terms of fully
curacy and further accelerate the convergence, overlapping sub-domains, hence achieving fast convergence with

The Schwarz algorithm begins by partitioning the domain into low cost by the use of coarse grid with substantially fewer points
two or more overlapping sub-domains. The problem is then di- in the overlap region [8].
vided into subproblems on each of these sub-domains. Multiplica- In this work, we assume that no a priori information is avail-
tive Schwarz algorithm successively solves the localized problems able about the unknown image. We have used the location of
in each sub-domain, every time using the latest solution available sources and detectors to determine the overlapping sub-regions.
to initialize the next sub-problem. Therefore, at every iteration We formulate the inverse problem on the fine grid as two smaller



size inerse problems on overlapping sub-regions. CG accelerator 2.2.1. Uni-Level Domain Decomposition Algorithm
is used to approximate the solution on one sub-region. This solu-
tion is used to initialize the optimization in the other sub-region.
The fine grid iterations are followed by a coarse grid correction
scheme, where the inverse problem aims to solve the residual equa-
tion formulated on the global coarse grid, which is of relatively
smaller size. A number of 2-grid cycles are run to further improve 0 2
the accuracy of the reconstruction.

2. PROBLEM FORMULATION

2.1. Forward Model Fig. 1. Decomposition of 92

The forward model for DOT is based on simplifying assumptions In this work, we decompose the domain 92 into two overlap-
applied to radiative transport equation which results in a form of ping sub-domains £2l and n22 such that Q2 = Ql U Q2 and Q0 is
photon diffusion equation. In frequency domain, the diffusion the overlapping region, that is 92o = 1fl nf22 (Figure 1). We dis-
equation is given by: card those source-detector pairings that would produce a coupling

2 . between the two sub-domains outside the overlapping region. In
-D 2 -D(r) - l-b(r) + p. (r) (r) = S (1) other words we remove any measurement that is due to a source in

Cf2 \S22 and to a detector in f22 \fl or vice versa. As a result, the

where D is the diffusion coefficient, c is the speed of light and measurement vector ý E Rm for M < M becomes
ta,(r) on the entire domain fn C R 2 is the spatially varying ab-
sorption coefficient. S stands for the point source located at r = ( Y01\02
r.. In this work, we focus on the reconstruction of absorption Y = Ylo (5)
coefficients p. of the medium, hence we assume that the diffu- Y02\n)
sion coefficient D has a spatially uniform distribution. We have
employed the perturbation approach [9] around a spatially invari- Regrouping the measurements in two vectors yi and y2 yields
ant optical background with a first order Rytov approximation to yl = (Yn1 \n2l yno)T and Y2 = (yno I Yn2\01 )T. Similarly the
solve the inverse problem. The cell-centered discretization on the differential absorption coefficients on the sub-domains are grouped
grid £ 2h yields a system of linear equations relating the differential as xh and x2, such that xh is a finite dimensional approximation
absorption coefficients 63 p (rn) to the measurements: of differential absorption coefficients on Q2, and x2 on 2 . As a

result we can formulate two sub-domain problems as follows
-h.. . Xi,LS = arg min IlY, - Whxh12

fi m WA "h _ Whxh ,2
YlM Wm ... 2,LS m= argmin 11Y2 2 (6)

- . " . .

f2 fi .. WYlW Will " Instead of estimating xh using the formulation given in equation 4,

we propose a procedure that follows minimization of the two ob-

y Jfp 5p. .a(rN) jective functionals formulated on the two sub-domains, with re-
YnmMl ... W(nmN ( duced number of measurements. This results in significant reduc-

wth (2) tion in the size of the inverse problem and consequently the com-where y4• denote the real part of the measurement at ihsource
putational complexity of the overall inverse DOT problem.

and ith detector at frequency fk, W/ is the weight for the jth A conjugate gradient (CG) algorithm is utilized to accelerate
pixel for ij source-detector pair, and 6/p, (nt) is the differential ab- the solution on each sub-grid. The solution update obtained after a
sorption coefficient for Ith pixel. We can denote this model system sweep of CG iterations on one domain is restricted to the overlap-
succinctly as: ping region on the grid 02h by the discrete operator I: f2 ..-* 0

y = whxh (3) The restricted estimates are then used to update the x2 estimates

where Wh is the weight matrix and y E mM, x E RN, Wh E on g2h, which is followed by iterations on hto yield a solution on
RM ×< N. N is the number of grid points on £h and M is the total entire discrete domain £2h. A v number of cycles is applied until a
number of measurements, desired level of convergence is achieved.

This approach takes advantage of the reduced size of inverse

2.2. Inverse Problem problem formulation by decomposing the domain and the associ-
ated measurements. Initialization in one sub-problem solution by

We formulate the discrete inverse problem to yield a minimum the current estimates in the other one and use of CG algorithm are
least squares solution for the differential absorption coefficients other important factors facilitating the acceleration of the solution.
xh on Qh.

-h argmin J(xh) argminlly - WhxhI12 (4) 2.2.2. Integrating Coarse Grid Correction
XL =h Single level Schwarz algorithms are not well suited for problems

where . denotes the Euclidean norm. exhibiting low frequency errors. CG iterations tend to smooth



the error in the solution. Even though CG algorithm accelerates 3. The resolution of our test image was 20 pixels by 40 pixels and
the convergence to the solution xh on g2h, it is unable to further the number of sources and detectors used was 17 and 33 respec-
eliminate the error with smooth content. This necessitates the use tively resulting in a 561 by 800 weight matrix Wh. We compared
of a coarse grid correction scheme, which enables elimination of four test cases: (1) least squares solution using conjugate gradient
smooth error by restricting it onto a coarser grid and correcting the on £h for the full inverse problem, (2) least squares solution us-
fine grid solution by interpolating the error in the coarse grid. ing conjugate gradient on f2h with the reduced source and detector

After the end of CG cycles on the sub-problems, the current configurations, (3) uni-level domain decomposition on the reduced
estimates x) and x2 are concatenated to yield the overall solution source and detector configuration, and (4) two-level domain de-

h Qestimate x on £zh. The error between the actual solution x* and composition with modified multiplicative smoother on the reduced
the current solution estimate xh is given by eh = -. h. As- source and detector configurations. By discarding those measure-
suming that the error eh on 2 h is smoothed well enough by CG ments that couple source on one sub-domain and the detector on
iterations, we can write a coarse grid approximation for this error, the other, we effectively reduce the dimension of the weight matrix
such that Wh.

h= Jh2h All algorithms were implemented in MATLAB. The results
e = I2he were compared using the same conjugate gradient and decompo-

where Ihh is the interpolation operator. We have selected 2Ih : sition codes. Figure 2 shows a plot of square error between the

RN14 _, RN as 4 (I2h)T where 1 2h : RN , RN/4 is the full actual and estimated image versus floating point operations (flops)

weighting operator in 2D [10]. As a result, the objective functional required for reconstruction. The square error was calculated by
given in equation 4 can be re-written as taking the pixel by pixel difference between the true image (see

Figure 3) and the reconstructed image then taking the sum of the
IIy - WhhI112 = IlY - Wh(&h + eh)112  squares of those differences. As shown in Figure 2, there is up to

= 11Y _ Wh(&h + I2he 2112 an average of 100% increase in efficiency using the uni-level do-
h -hh "- 2h 2 main decomposition algorithm compared with case (1). With the

= 11Y - W & - WIe2 h 112 addition of coarse grid correction, there is approximately 400%

= lir - W 2he2hi12 (7) increase in efficiency. We observed that the error curve tends to
settle faster for single level methods. This is to be expected since

which is the coarse grid objective functional defined on the coarse the motivation for coarse grid correction is to compensate for the
grid p1 2h with grid size of 2h. r = y - Whxh is called the resid- smoother's inability to properly handle globalized (i.e. low fre-
ual, e2h is the coarse grid error, and W2h = WhIhh is the coarse quency) errors.
grid operator. CG iterations on the coarse grid error e2h, which
is initially assigned to zero, eliminate the high-frequency compo-
nents of e2h which appeared to be smooth on 2h . This results from

4the fact that low frequency components appear more oscillatory on
coarse grids as compared to fine grids. 3

The error estimate e2
h on c2h Can then be interpolated to the

fine grid to correct the fine grid solution estimate xh

h hCh 2 C.G. Red.
Xh Xh + Ihe

2
h (8) 2"

A predefined number of 2-grid cycles are run to further improve
the solution accuracy. A pseudo-code of the overall 2-level domain
decomposition algorithm is given below. Two-Level 1.

0 0.2 1 1.5 2 2.2
No. of Flops 010'

Algorithm 1 Two-Grid Domain Decomposition Algorithm

1: WIh, WIh, y1, Y2 -- partition(Wh, y) Fig. 2. Square Error vs. No. of Flops

2: W 2 h +- restrict(Wh) {We only need to generate f22h once}3: x h +-- initialize(Xh)

4: repeat
5: xh - CG(WI, yi, xi) {Smoothing on }
6: X 2 - CG(W2,y 2 , X2) {Smoothing on 2h}
7: r 4-- y - Whxh {Calculate residual.}
8: e - CG(W

2 h , r, e
2 h) {Solve for coarse grid error}

9: e h -- interpolate(e 2 h)
10: xh <_ xh + eh

11: until convergence

3. EXPERIMENTAL RESULTS Fig. 3. Simulated Phantom Configuration

We performed test cases against a simple simulated phantom con- Figures 4, 5, 6, and 7 shows the reconstructed images for each
figuration consisting of two rectangular inclusions as seen in Fig. method after 1200 iterations. As can be inferred from Figures 5
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Fig. 5. Direct Method w/ Reduced S-D Pairs: 1200 Iterations Fig. 7. Two Grid D.D.: 1200 Iterations

and 6, the uni-level domain decomposition method and the direct 5. REFERENCES

CG on the reduced source-detector configurations had nearly equal
error after 1200 iterations, but the computational time was cut by [1] Barry Smith, Petter BjMrstad, and William Gropp. Domain De-
half for the domain decomposition case. The effect of coarse grid composition: Parallel Multilevel Methods for Elliptic Partial
correction on the domain decomposition algorithm is clear from Differential Equations. Cambridge University Press, 1996.
Figure 7. By incorporating coarse grid correction, the algorithm [2] Alflo Quarteroni and Alberto Valli. Domain Decomposition
is able to handle the smooth errors around the boundaries of the Methods for Partial Differential Equations. Oxford Science
inclusions. In effect, we end up with a much sharper picture and Publications, 1999.
better results around these boundaries. [3] U. Trottenberg, C. Oosterlee, A. Schiiller, "Multigrid," Aca-

demic Press, New York, 2001.

4. CONCLUSION [4] J. C. Ye, C. A. Bouman, K. J. Webb, and R. Millane, "Non-
linear multigrid algorithms for Bayesian optical diffusion to-

In this paper, we investigated the effectiveness, in terms of com- mography," IEEE Transactions in Image Processing. Vol. 10,
putational efficiency, of applying Schwarz type domain decom- No. 6, pp. 909-922, June 2001.
position method in the solution of linearized DOT inverse prob- [5] M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, E. M. Sevick-
lem. We modified the classic Schwarz algorithm where CG was Muraca, "Three-Dimensional Bayesian Optical Image Recon-
used to accelerate the convergence to the least squares solution struction with Domain Decomposition," IEEE Transactions on
for each sub-problem in the place of the usual Gauss-Siedel itera- Medical Imaging, Vol. 20, No. 3, March 2001.
tions. In our two grid domain decomposition algorithm, CG was
applied to each sub-domain for several iterations (to get a good [6] M. Guven, B. Yazici, X. Intes, B. Chance,"An Adaptive Multi-
smoothing effect). The residual from the entire domain was then grid Algorithm for Region of Interest Diffuse Optical Tomog-
restricted to the coarse grid to find the coarse grid error which was raphy," Proceedings of IEEE Int. Conference in Image Pro-
then interpolated back to the fine grid for error correction. The cessing, 2003.
addition of the domain decomposition reduced the computational [7] M. Guven, B. Yazici, X. Intes, B. Chance,"An Adaptive V-grid
burden while addition of the coarse grid allowed for correction Algorithm for Diffuse Optical Tomography," Proceedings of
of global (low frequency) errors. In terms of computational effi- IEEE Bioengineering Conference, pp: 95 -96, 2003.
ciency as compared with CG solution for the full problem, uni- [8] S. F. Cormick, "Multilevel Adaptive Methods for Partial Dif-
level domain decomposition method showed 100% increase while ferential Equations," SIAM, Philadelphia, 1989.
two-level method saw nearly 400%. As a result of these prelim-
inary findings, we feel that domain decomposition coupled with [9] S. R. Arridge, "Photon Measurement Density Functions. Part
multi-grid methods is a viable option for decreasing the computa- 1: Analytical Forms," Appl. Opt. 34, pp. 7395-7409, 1995.
tion complexity of the DOT inverse problem even when there is no [10] William L. Briggs, Van Emden Henson, and Steve F. Mc-
parallelization of the problem. As such, the algorithm proposed is Cormick. A Multigrid Tutorial: Second Edition. SIAM, 2000.
well-suited for real-time DOT image reconstruction.



INSTITUTE OF PHYSICS PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY

Phys. Med. Biol. 50 (2005) 2837-2858 doi: 10.1088/0031-9155/50/12/008

Diffuse optical tomography with a priori anatomical
information

Murat Guven1, Birsen Yazici1, Xavier Intes2,3 and Britton Chance2

I Electrical, Computer, and Systems Engineering Department, Rensselaer Polytechnic Institute,

Troy, NY, USA
2 Department of Biophysics and Biochemistry, University of Pennsylvania, Philadelphia, PA,

USA

E-mail: yazici@ecse.rpi.edu

Received 4 February 2005, in final form 6 February 2005
Published 1 June 2005
Online at stacks.iop.org/PMB/50/2837

Abstract
Diffuse optical tomography (DOT) poses a typical ill-posed inverse problem
with a limited number of measurements and inherently low spatial resolution,
In this paper, we propose a hierarchical Bayesian approach to improve spatial
resolution and quantitative accuracy by using a priori information provided by
a secondary high resolution anatomical imaging modality, such as magnetic
resonance (MR) or x-ray. In such a dual imaging approach, while the
correlation between optical and anatomical images may be high, it is not
perfect. For example, a tumour may be present in the optical image, but
may not be discernable in the anatomical image. The proposed hierarchical
Bayesian approach allows incorporation of partial a priori knowledge about
the noise and unknown optical image models, thereby capturing the function-
anatomy correlation effectively. We present a computationally efficient iterative
algorithm to simultaneously estimate the optical image and the unknown
a priori model parameters. Extensive numerical simulations demonstrate
that the proposed method avoids undesirable bias towards anatomical prior
information and leads to significantly improved spatial resolution and
quantitative accuracy.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Diffuse optical tomography (DOT) is a non-invasive imaging modality that makes use of
the light in the near-infrared (NIR) spectrum (Yodh and Chance 1995, Hebden et al 1997,
Arridge and Hebden 1997, Intes and Chance 2005). The inverse problem in DOT involves

3 Present address: ART Advanced Research Technologies, Quebec, Canada.
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reconstruction of spatially varying absorption and scattering properties (O'Leary 1996, Boas
et al 2001, Arridge 1999) as well as fluorophore lifetime and yield (Chang et al 1997, Hawrysz
and Sevick-Muraca 2000, Eppstein et al 2002) in tissues from boundary measurements.
These fundamental quantities can be utilized to obtain tissue oxy- and de-oxyhaemoglobin
concentrations, blood oxygen saturation, water, fat and contrast agent uptake in tissue (Kincade
2004). The unique physiological and biochemical information offered by DOT is very valuable
for practical applications such as breast cancer diagnosis (Cerussi et al 2001, Srinivasan et al
2003, Intes et al 2003), cognitive activity monitoring (Strangman et al 2002, Villringer and
Chance 1997, Chance et al 2003), brain tumour and haemorrhage detection (Hebden et al
2004), functional muscle imaging (Quaresima et al 2003) with a growing list of applications
in fluorescence tomographic imaging (Frangioni 2003, Weissleder and Ntziachristos 2003).

DOT poses a typical ill-posed inverse problem with a large number of unknowns
and a relatively limited number of measurements. This necessitates the incorporation of
a priori information into the inverse problem formulation in order to obtain viable solutions.
Furthermore, propagation of NIR light is not restricted to a plane owing to the diffuse nature
of photons in turbid media, which results in poor spatial resolution. To tackle the ill-posed
nature of the inverse problem and to address the low spatial resolution in DOT, a number of
approaches have been developed. Bayesian approach has been suggested to incorporate a priori
information to the inverse problem formulation (Oh et al 2002, Milstein et al 2002, Eppstein
et al 2002, Guven et al 2002, Ye et al 2001). Introducing penalty functions (Hielscher
and Bartel 2001) and uniform (Paulsen and Jiang 1996, Arridge 1993, Jiang et al 1996,
Yao et al 1997) or spatially varying regularization terms (Pogue et al 1999) within the
regularization framework are alternative ways to incorporate a priori information into the
image reconstruction process. In all these studies, no other imaging modality has been utilized
to infer information specific to the medium of interest, which could be used to tune the prior
information.

1.1. Related literature

Recently several research groups reported development of hybrid imaging systems combining
optical methods with high resolution anatomical imaging techniques. These include a
concurrent x-ray tomosynthesis-DOT system at Massachusetts General Hospital (Li et al
2003), MRI-DOT/DOS (Diffuse Optical Spectroscopy) systems at University of Pennsylvania
(Intes et al 2002), University of California at Irvine (Gulsen et al 2003) and Dartmouth College
(Brooksby et al 2003) and ultrasound-DOT system at University of Connecticut (Zhu et al
2003a). These multi-modality developments are all motivated by the fact that DOT offers
unique functional information (such as tissue oxy- and deoxy-haemoglobin concentrations)
while high resolution anatomical imaging modalities provide complementary information for
disease diagnosis and understanding with superior localization and spatial resolution. Another
incentive comes from the assumption that the contrast elements provided by high resolution
imaging modalities correlate well with the optical properties. A number of studies lend
support to this assumption. Ntziachristos et al (2000) have reported that there exists a good
spatial correlation between gadolinium (Gd)-enhanced MR and Indocyanine Green (ICG)-
enhanced DOT images. Cuccia et al (2003) have also shown that Gd-enhanced and Methyl
Blue (MB)-NIR results correlate well with each other in terms of perfusion dynamics. Merritt
et al (2003a, 2003b) presented similar observations to demonstrate correlation between MR
and DOS in water and lipid concentration retrieval. Furthermore a number of studies have
shown that incorporation of high resolution anatomical images as a priori information leads
to improved diffuse optical image reconstruction (Dehghani et al 2002, Ntziachristos et al
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2002). Pogue and Paulsen (1998) used MR images to generate a finite element mesh to
reconstruct a simulated rat cranium, where the available information, about the structure and
optical properties, is used for the initial guess in the inversion algorithm similar to the approach
followed by Xu et al (2002). Schweiger and Arridge (1999) suggested using the structural
information to reconstruct images of a segmented brain model at a low resolution level in order
to obtain a good initial guess for the high-resolution solution of the same problem. Use of MR
scans has been employed for optical breast imaging (Chang et al 1997, Barbour et al 1995)
where the 'reference medium' was obtained from accurate optical properties of the tissue,
with the anatomy derived from MR images. Li et al (2003) reported optical breast imaging
results guided by x-ray mammography, where x-ray contrast was assumed to be proportional
to DOT contrast. X-ray images are used as the spatial constraint to decompose the optical
medium into two major sub-domains, representing the region of interest as referred to the
tumour region and the background, respectively. A hybrid L-curve method is followed for
the estimation of regularization parameters for each of the regularization terms corresponding
to the sub-domains, which challenges the inverse problem computationally. Brooksby et al
(2003) extended the idea proposed by Schweiger and Arridge (1999) to incorporate the initial
low-resolution optical image as derived from MR image by using structural information and
spatially varying regularization. The reported results are encouraging; however, accurate
quantification of the tumour region is possible only when the true optical heterogeneity of
tissue distribution is included. Therefore in this approach, the overall performance relies upon
the quality of the initial guess.

1.2. Proposed method

In all the studies referenced above, the performance of the DOT image reconstruction
relies on the assumption that the correlation between the anatomical and optical images is
high. However, there may be regions in the optical image that do not have any anatomical
counterparts. For example, a tumour may be apparent in the optical image, but may not
have a corresponding signature in the anatomical image. Furthermore, average optical
coefficients extracted from anatomical images may be significantly different from the true
optical coefficients of tissue. As a result, the assumption of strong optical-anatomy correlation
may cause undesirable, erroneous bias in optical image reconstruction. Therefore, more
flexible prior models are needed to properly represent optical-anatomy correlation. For
example, when the average optical properties extracted from anatomical images are not
reliable, prior image model should provide weaker constraints in image reconstruction. The
hierarchical Bayesian framework affords such a flexibility in designing prior image and noise
models. In the hierarchical Bayesian framework, one can formulate the inverse problem in
multiple stages where each stage includes information about the unknown parameters of the
preceding stage. The first stage of the hierarchy includes the data likelihood and the first
stage of the image prior, which comprise statistical models for the noise and optical image,
respectively. These models include parameters associated with noise and image statistics,
which are not known precisely in practice. These unknown parameters are referred to as
hyperparameters, which can be regarded as random variables. The succeeding stage of
the hierarchical formulation incorporates a priori information about the hyperparameters in
the form of prior distributions-so called hyperpriors-defined on the hyperparameters. The
incorporation of the second stage concludes the design of the two-level hierarchical noise and
image models.

In this paper, we consider a two-level hierarchical Bayesian formulation to incorporate
a priori anatomical and tissue classification information into the DOT image reconstruction.
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We start with the segmentation of the high resolution image and classify the segmented
image into sub-images representing major tissue types. Based on the tissue label information
extracted from the anatomical image, we design the first stage of the prior distribution on the
unknown optical image as a function of unknown hyperparameters, namely the image mean and
standard deviation. Next, we design the data likelihood corresponding to the parametric noise
model with an associated unknown hyperparameter, which is related to the noise variance. The
uncertainty in the models owing to the unknown hyperparameters is addressed by defining
hyperpriors on the hyperparameters, which constitutes the second stage of the hierarchical
formulation. The hyperprior on the noise-variance related hyperparameter is assumed to be
uniform so as to not constrain its value. The hyperpriors on the hyperparameters of the image
model are formulated with the aid of coregistered tissue classification. Consequently, the
second stage of the image prior integrates the subjective information into the formulation,
defining the extent of the correlation between the anatomical and optical images. As a
result, a priori information is used to constrain the hyperparameters, thereby imposing weaker
constraints on the optical image. We refer to sections 2 and 3 for a detailed discussion of the
hierarchical noise and image models.

Having designed the hierarchical noise and image models, we formulate the joint
distribution of the measurements, the image and the unknown hyperparameters associated with
the noise and image models. In order to estimate the hyperparameters, we adapt the linear
conjugate gradient (CG) algorithm to include a hyperparameter estimation step followed by an
image update. In this context, we apply an iterative empirical Bayesian approach to estimate
the hyperparameters, which in turn gives the maximum a posteriori (MAP) estimates of the
hyperparameters at each CG iteration prior to the image update. Hence, the noise and image
models are accommodated at each update of the hyperparameters along with the solution
process.

We perform simulation experiments to evaluate the performance of the proposed
hierarchical Bayesian formulation and hyperparameter estimation scheme. Our results indicate
that hierarchical Bayesian approach captures the function-anatomy correlation properly and
provides improved DOT image reconstruction without introducing undesirable bias towards
a priori anatomical information. Our simulation experiments show that the proposed method
provides accurate reconstruction of tumours even when tumour contrast is absent in the
anatomical image.

1.3. Organization of the paper

The paper is organized as follows. Section 2 defines the forward model. Section 3 provides
background on the hierarchical Bayesian formulation of the inverse problem and describes
the components of the hierarchical model. Section 4 presents the iterative algorithm for the
simultaneous estimation of the optical image and the unknown hyperparameters. Section 5
includes numerical experiments to validate the properties of the proposed approach. Section 6
summarizes our results and conclusion. The appendix includes the derivation of the estimation
of the hyperparameters.

2. Forward model

In the NIR region of the electromagnetic spectrum, light propagation in biological tissue can
be modelled by the diffusion approximation to the radiative transfer equation. The diffusion
equation in the frequency domain is given by

V D(r) vq0(r) - a.(r)q5(r) - '(00(r) = -Ab(r - r,), (1)
C
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where 0 (r) represents the spatially varying optical field in the medium Q2 C R 3, due to the
point source AS (r - r,) located at r = r,. co denotes the modulation frequency of the source,
c is the speed of light and i = -f. D(r) is the spatially varying diffusion coefficient and
/t1a (r) stands for the spatially varying absorption coefficient of the medium.

In this work, we focus on the reconstruction of absorption coefficients of the medium.
Therefore, we assume that the diffusion coefficient of the medium is known and spatially
invariant. As a result, the following diffusion equation given in frequency domain suffices to
define the forward model:

D V2 0(r) - /Za(r)0b(r) - -.ob(r) = -Ab(r - r,). (2)
C

We have employed the perturbation approach (O'Leary et al 1995, Arridge 1995, Kak
and Slaney 1988) with a first-order Rytov approximation to solve the forward problem in the
frequency domain to yield a system of linear equations after the discretization of the medium
f2 into N uniform voxels (Guven et al 2003a):

y = Wx + C, (3)

where y is the measurement vector, W is the Jacobian based on the Rytov approximation
computed around a specified homogeneous background ~a (r) = P'aO, X E RN denotes
the vector of differential absorption coefficients 8 Za of the medium with respect to the
homogeneous background and C is the additive noise in the measurement system. Note
that recently a number of researches (Ntziachristos et a 2002, Li et a 2003, Zhu et a 2003b,
Intes et al 2003) have reported improved DOT reconstructions for clinical images based on
linearized forward model using high resolution anatomical priors.

3. Hierarchical Bayesian formulation of the inverse problem

We approach the DOT inverse problem from a Bayesian perspective. In particular, we propose
a hierarchical Bayesian approach to effectively capture the function-anatomy correlation.

We formulate the posterior distribution of the unknown image and compute its maximum
a posteriori (MAP) estimate &MAP; that is

XMAP = argmax{logp(xly)},

where log p(xly) is the posterior distribution of the unknown image x given the measurements
y. Equivalently,

&MAP = argmax{logp(ylx) + logp(x)},

where p(ylIx) is the data likelihood and p (x) is the prior on the unknown image a.
In our problem, in addition to the optical boundary measurements y, we also have the

anatomical tissue label information C, derived from the a priori anatomical image. Therefore,
the MAP estimate can be modified as

XMAP = argmax{logp(xly, C)}

- arg max{log p(ylx, C) + log p(xlC)}, (4)

where p(ylx, C) is the data likelihood and p(xlC) is the conditional probability density
function of x given the tissue label information C.

Given the forward model (3), the data likelihood is governed mainly by the noise statistics.
Therefore equation (4) reduces to

XMAP = arg max{log p(yjIx) + log p(xI C)}. (5)
a,
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In our formulation, the noise statistics and the prior distribution are governed by unknown
model parameters X and Q, respectively. Here, X is the scalar parameter associated with
the noise variance and Q is the vector of mean and variance of sub-images that correspond
to different tissue labels. We will refer to these parameters as hyperparameters. In order
to estimate the unknown image and the associated hyperparameters, we consider the joint
conditional distribution p(y, x, X, QIC):

p(y, x, ), QIC) = p(y, 3Ix)p(x, QIC), (6)

where p(x, QIC) is the conditional hierarchical prior on the image x and the hyperparameters
Q. Equation (6) can be alternatively expressed as

logp(y, x, , QIC) = logp(ylx, ), + log p(;X) + logp(xlQ, C) + logp(QIC), (7)

where p(X) is the prior distribution on X. We shall refer to p0() and p(Q IC) as hyperpriors
(Berger 1988). In this representation, p(xl Q, C) is the first-stage prior and p(QIC) stands
for the second-stage prior. In the following sections, we will discuss how the data likelihood
and the hierarchical prior are modelled.

3.1. The data likelihood model

The measurement vector y is formed as
y .. f [y yft y lf ft ft 12 . (8 )

S... Y 2 ... YSD Y " YSD" (

where S is the number of sources, D is the number of detectors and F is the number of
frequencies associated with each source. The total number of measurements is then equal to
P = S x D x F. For computational efficiency, we limit the data set to the real part of the
measurements, thus y E R•l.

Photon detection can be modelled using shot noise statistics, which originates from
Poisson statistics. With a sufficiently large number of detected photons, the Poisson statistics
can be approximated by a Gaussian distribution, with a variance proportional to the magnitude
of the measurements (Ye et al 2001, Oh et al 2002). Consequently, we model the data
likelihood in equation (6) as

p(y, Xlx)- KIA¢(3)I1/2 exp [-Illy - WXII1t(A,], (9)

where we assume a non-informative prior for A., which is a uniform density on R1 (Berger
1988). In the above distribution, Aý ().) is the covariance matrix of size P x P, K is the
normalization constant and lIz 112 = zTAz. Under the assumption of statistical independence,
Aý (3.) becomes a diagonal matrix of the form:

a-o' 0 0 ... 0

0 X 2  0 ... 0

AC (X) =A= 0 0 ". 0 0 , (10)

.0

0 0 0 0 Xo'2

where ou is equal to the absolute value of the pth measurement and the unknown parameter
X controfs the scale of the noise covariance matrix. Therefore, we shall refer to X as 'noise
scale' for the rest of the paper.
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3.2. Hierarchical formulation of the prior distribution

We downsample the high resolution anatomical image to match its resolution with that of
the optical image. Next, we utilize the downsampled anatomical image to decompose the
optical domain into M non-overlapping sub-images, each of which is assumed to represent a
major tissue type. For instance, for breast, these tissues types can be parenchyma, adipose
and tumour (Ntziachristos et al 1999, 2000). We assume a Gaussian distribution for each sub-
image, with unknown mean and standard deviation. Thus, the first stage in the hierarchical
prior distribution for the ith sub-image is given by

P(XiILi, or!) = (27r exp - -/ i = 1, 2,..., M (11)

with the implicit assumption that the voxels in each sub-image are statistically independent.
pi = (I ... i)T is the uniform mean value vector of size Ni x 1, where Ni stands for

the number of voxels in the ith sub-image. The covariance matrix associated with the ith
sub-image Ax (ri) = craI2IN<N, where ai is the standard deviation of each voxel in the ith
sub-image and IN×xN, is the Ni x Ni identity matrix. Assuming that the sub-images are
statistically independent, the first-stage prior of the image given the tissue label information
C is

p(XIQ, C) = p(Xltt, a, C)
1 Fl1 2 (12)

S(27r)N/21Ax(C)11/2 exp i-2 - i I I

where Q = [p, o*]. IL is the vector of mean values assigned to the sub-images and 0' is the
vector of standard deviations associated with the sub-images, that is

T

1 """ 1  2"""2 "M(13)
NI N2  NM

[At1 "A "l /12 .. P "/2 ... AJM'/'IM
--- =l.L M (14)
k NI N2 NM

and A, (a,) is the covariance matrix of the image x

IrNIX×N1  0 0 ... 0

0 ta2 IN2,N 2  0 ... 0

A, x(o)= 0 0 . . 0 (15)

0

0 0 0 0 2orM INMX×NM

The second-stage prior involves incorporation of the a priori information into the
hierarchical prior distribution; in the form of hyperpriors defined on the unknown
hyperparameters of the first stage, that is the mean and standard deviation of different tissue
types in the optical image. Note the mean values of different tissue types are specific to the
unknown optical image and are different from average optical values of tissues available in
the literature. Nevertheless, the information available in the literature can be used to design
hyperpriors on the unknown mean and standard deviation, which allows effective modelling
of the uncertainty in the prior information.

We assume a Gaussian distribution for the mean value p of the image:

1 Fl - I 2 111_ 1-, (6
p(pIC) = (27r)N/21A ()I1/2 exp [ A (1
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where j2 = = and Ai is the average differential absorption of the ith tissue type.
Ag, () = Ax (or) I is the covariance matrix where ai stands for the standard deviation of
the mean value of each voxel in the ith tissue type, for i = 1, 2, .... , M.

Similarly, we assume a Gaussian distribution for standard deviation 0o of the image:
p(OlC) exp aI _A._11o 2 , (17),,2exp - lir -t l2 )

(27r)N/ 2IA,(y)l/2  2

where p = jA I and A,(y) = A,(a)I i=y, for i = 1, 2, ..... M. Thus, the second-stage
prior p(QIC) becomes

p(QIC) p(41, trC) = p(tlIC)p(ClC)

(27r)NIAA,(lO)I1/ 21A,(y)Il/ 2 exp (Y)( IIc - /.L7I.))

(18)

Having designed the first- and second-stage priors, the hierarchical prior distribution in
equation (6) becomes

p(x, QIC) = p(x, A, 01C) = p(Xlp, oa, C)p(plC)p(OrlC)
1

(21r)IN/21Ax,(O,)11/21A,,(O )11/21A,,(y)11/2

xx[2'( 2 -2 2 )] (19)
x exp A-,Ix - I11^21() + IIIt - Pill1(e) + ijr - I. IIA.1() (

In practice, A2i can be assigned based on the average absorption coefficients of tissue
types provided in the literature with a sufficiently large variance #,2. Analogously, the mean
value of o, can be extracted from the error bounds of the average optical properties of tissue
types which are documented in the literature. See for example, Mobley and Vo-Dinh (2003)
and Cheong et al (1990) for an exhaustive list of optical coefficients for human tissue and
fluids. An alternative method could be to employ a low-resolution estimate of the optical
image (typically a least-squares solution) to extract approximate values for these parameters
from the optical data. While alternative distribution models on it and o can be considered, we
will see in the next section and appendix that the Gaussian model leads to a computationally
efficient hyperparameter estimation scheme.

4. Image reconstruction and hyperparameter estimation

Following an empirical Bayesian approach (Berger 1988), we propose an iterative algorithm to
estimate both the optical image and the hyperparameters. At each iteration, the MAP estimates
of the hyperparameters are computed by successively maximizing the joint distribution with
respect to each hyperparameter. The hyperparameter estimation step at each iteration is
followed by an image update.

Substituting equations (9) and (19) into (6), the joint probability distribution of the
measurements, optical image and the hyperparameters becomes

p(y, X, X, )" tt iC) = p(y, ).lx)p(Xl/1, e', C)p(tplC)p(OlC)
1

g (27r)IN/2 Aý (X),l1/2 [A.,(0,) 1 121AA() )1l/2 JA.- (y)11/2

x exp [- (llY - WXll2,(A) + IlX - ttIA12 )
+ -AC ))(

+ lit, _ IIA112_. + 110, -- tt4 11A2 CV (20)
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Let 4I'(x, ), /i, or) be the objective functional given by

41 (x , X, Ir) = -log p(y X, A, ,/., ai1C). (21)

Then, the image reconstruction becomes an optimization problem in which the objective
functional qI(x, X, IA, o,) has to be minimized with respect to the image x and the
hyperparameters X, 1A and o'.

The hyperparameter estimation problem has been a focus of both the statistical and
engineering communities and many procedures have been suggested to date (Mohammad-
Djafari 1993, 1996, Zhou et al 1994, Molina et al 1999, Utsugi 1997). Since the optimization
with respect to the optical image itself is a computationally intense problem, it is desirable to
keep the computation complexity of hyperparameter estimation to minimum. Therefore, we
propose an iterative algorithm based on the empirical Bayesian approach that successively
estimates the hyperparameters. The hyperparameter estimation step is followed by the
image update by one iteration of CG algorithm, applied with the current estimates of the
hyperparameters.

We consider an alternating minimization scheme for the estimation of the mean and
standard deviation, where the current estimate of one of the parameters is used to estimate
the other. This approach provides a computationally efficient solution to the hyperparameter
estimation problem with only O(N) extra operations at each iteration, where N is the number of
voxels. The estimation of the noise scale A is independent of the image model hyperparameters
and requires O(N) extra operations when a gradient-based algorithm (such as conjugate
gradient algorithm) is used. As a result, the image is updated based on the current estimates
of the hyperparameters with O(N P) operations, by one CG iteration.

A pseudocode describing the details of the proposed iterative image and hyperparameter
estimation scheme is given in table 1. The outline of the algorithm is as follows: the image
estimate is initialized to zero vector at the beginning of the iterations. At each iteration, for
the given image update 1, we consider du as the hidden variable of the conditional probability
p(yIX) and formulate the MAP estimate of the hyperparameter k, which corresponds to the
minimization of the objective functional q('(x, X, Ii, a-) with respect to A,

!MAP <- arg min (IX, ,A, a-). (22)

Hyperparameters of the image model are estimated in a similar way. We formulate the
MAP estimate of the hyperparameter L, given the image update as the observations and the
current estimate of the standard deviation as the hidden variable of the conditional probability
p(xljj, C). This corresponds to the minimization of the objective functional with respect
to Ij,

I'MAP +- arg min 41(&, X, t, 8). (23)

Similarly, we formulate the MAP estimate of the hyperparameter 0r, given the image update as
the observations and the current estimate of the mean as the hidden variable of the conditional
probability p (x Iao, C). This is equivalent to the minimization of the objective functional with
respect to or:

&MAP <- arg min xP (ic, X, A, o,). (24)

Note that the estimate 1. is attained regardless of the value of o, and 1A and vice versa (see the
appendix). The estimation of the hyperparameters is followed by the update of the image by
one CG iteration

XMAP <- CGupdate{f'(X', , A, &)}, (25)
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Table 1. The modified conjugate gradient algorithm with the proper initializations and embedded
hyperparameter estimation sub-routine.

begin{Initialize)
Image: 1(o) = 0

Hyperparameters: ) -1; ; 05'i (0) = kI, for i = 1,2. Mki > 0

Gradient vector: g(O) - -2 (.0()) = - =

Search direction: d(°) = g(0)
Termination criterion: e
Iteration counter: n = 0

end{lnitialize)
repeat

begin{Update Image)
Exact line search: ct(n) = arg minc,>o q, (i(n) + ad(n), P), A(n), (n))
,E(n+l) = 1(n) + t(n)d(n)

end{Update Image)
begin{Estimate Hyperparameters)10(+0 '_._ arg minx %P X•,, 1, LO), ar(n))

-(n+l) <-- arg min, AP(1(0) X(n), 0 "(n))

60(n+) - arg min, '(bIc(n), • (n),n+l) a)
end(Estimate Hyperparameters)

begin(Update Search Direction)
p(n+l) _S2(&(n+1))

]•(nl) = ¢gO+ý)T(.g(n+0 )_ n))O
'6+)maxg g(n)T7_n)Fg

d(n+) (n+l) + f(n+l4)

end{Update Search Direction)
n =n+l

until Ila1"nf2(;k"n)ll < S

where the step length is computed by the exact line search (Nash and Sofer 1996) and Polak-
Ribi~re-Polyak method (Polak and Ribi~re 1969, Polyak 1969) is used to calculate P parameter
of the CG method. The derivation of the hyperparameters is given in the appendix in detail.
The computational complexity of the proposed image reconstruction and hyperparameter
estimation algorithm is shown in table 2.

Note that the proposed simultaneous image reconstruction and hyperparameter estimation
algorithm can be viewed as a variation of the alternating minimization algorithm (Csiszar and
Tusnady 1984), where the minimization of the objective functional (J(x, ., /A, a) with respect
to the image is replaced by one CG iteration that leads to the update of the image. Similar
approaches can be found in Mohammad-Djafari (1993, 1996) and Milstein et al (2002). The
empirical approach proposed in this work is asymptotically efficient and comparable with the
hierarchical analysis (Berger 1988, Molina eta! 1999) provided that the number of observations
(Ni for the sub-images, P for the measurements) is large (Berger 1988). Alternative approaches
for hyperparameter estimation include ML-Type II (Berger 1988) and marginalized ML type
estimation schemes, which do not incorporate hyperpriors. Extension of these approaches
to marginalized MAP estimation requires integration over the multi-dimensional image x
(Molina et al 1999, Galatsanos et al 2002), which may result in increased computational

complexity.

5. Results

We perform three sets of experiments to evaluate the performance of the proposed method. For
each of the experiments, we used a finite difference code to simulate the optical measurements.
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Table 2. Computation complexity of the algorithm described in table 1. N is the number of voxels
and P is the number of measurements. Since the noise scale estimate 1 is used in the calculation
of t, this saves O(NP) number of multiplications and O(NP) number of additions. Thus,
the estimation sub-routine does not affect the overall computational complexity of the original
conjugate gradient algorithm.

Number of Number of
Operation multiplications additions

a computation
(exact line search) O(NP) O(NP)

p parameter calculation 0(N) 0(N)
Estimation of I O(NP) O(NP)
Estimation of p O(N) O(N)
Estimation of o, O(N) O(N)
Gradient calculation

and image update O(NP) O(NP)

Total O(NP) O(NP)

3% of the mean value of measurements was added to the measurement vector y in each
experiment.

In the first set of experiments, the objective is to evaluate whether the optical image
reconstruction is biased towards the average optical coefficients, which are used to formulate
the hyperprior defined on the mean value. Second set of experiments demonstrate how well
the hierarchical Bayesian formulation captures the correlation between the optical and the
a priori anatomical image. In the last set of experiments, we evaluate the proposed method
using optical data simulated from an MR breast image. We show that the a priori information
improves the image reconstruction and does not lead to an erroneous bias towards the a priori
information.

5.1. Simulation experiment I

A priori selection of parameters in the assumed image and/or noise models may bias the optical
image reconstruction in an undesirable way. The hierarchical Bayesian formulation and the
empirical hyperparameter estimation scheme proposed in this paper avoids such undesirable
results by incorporating dynamic image and noise models in the problem formulation. In
this experiment, we show that the proposed hyperparameter estimation approach is relatively
insensitive to average optical values used to design the hyperprior p(pIC), defined on the
mean value of the image.

We consider a square heterogeneity with a mean absorption coefficient of 0.071 cm-1

embedded in a background with a mean absorption coefficient of 0.04 cm- 1 as shown
in figure 1. The diffusion coefficient of both the heterogeneity and the background is
assumed equal and set to D = 0.033 cm. We consider a transmission geometry and
distribute 19 sources and 19 detectors on opposite sides to yield a total of 722 measurements,
collected at two frequencies, that is 100 and 200 MHz. We evaluate the Jacobian at /A0 =
0.04 cm-1 and perform 200 experiments with the proposed hierarchical Bayesian formulation
and hyperparameter estimation scheme. At each experiment, p(It IC) is formulated such that
Fli + /ao for the square inclusion and for the background are drawn randomly from a uniform
distribution with lower and upper bounds (0.038, 0.114) and (0.02, 0.06), respectively (Note
that T2i value is used in the formulation of the objective functional). The associated standard
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Figure 1. The medium used to simulate the optical data for the first experiment. A square absorber
is embedded in an almost homogeneous background.
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Figure 2. The average absorption values (Aa) in the reconstructed sub-images for randomly drawn
average absorption values /a. Results are shown for 200 trials. Note that the /2 values estimated
for the square inclusion (an average value of 0.068) are very close to the actual value of 0.071.
(a) The average value Ia in the reconstructed square heterogeneity versus the average absorption
value drawn for the square heterogeneity is shown. (b) The average value fa in the reconstructed
background sub-image versus the average absorption value 2 a drawn for the background is shown.

deviation zi is sufficiently large and set to Oi = 6(A.i + jLaO). Similarly p(oIC) is formulated
such that , = 0.4(/iA j + j,0O) and yi = 15zLer,.

This simulation study demonstrates that the proposed method provides effective means
to constrain image reconstruction without biasing the solution. Figure 2 shows the average of
the estimated absorption values fia (i.e. &i + /PaO) versus the assigned hyperparameter values
Aa (i.e. Ai + Ia0) for the square inclusion and the background, respectively. We observe that
quantitative accuracy is achieved even in the extreme cases and the reconstruction for the
background is almost insensitive to the assigned hyperparameters.

5.2. Simulation experiment H

In this experiment, we examine a case where the heterogeneity is present in the a priori
anatomical image but not in the optical image (see figure 3). Based on the anatomical
template, the optical image was segmented into two sub-images, one corresponding to the
background and the other corresponding to the two inclusions, which were assumed to have
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Figure 3. The optical image (a) and the anatomical counterpart (b). Note the additional absorber
(square inclusion) indicated by the anatomical prior which does not exist in the optical map.

Table 3. The parameter set used in the inverse problem formulations for the simulation experiment
II, displayed for the two sub-images: the inclusions and the background. /.aO = 0.04 and
D = 0.33 cm for this experiment. This experiment was performed with the same source-detector
configuration as in experiment 1.

Hyperprior parameters

Both inclusions in (0.08, 0.04) (0.03, 0.45)
the anatomical image
Background (0.04, 0.02) (0.02, 0.30)

the same average optical coefficients. For comparison, we also considered the maximum
likelihood (ML) approach for theyinverse problem formulation. The ML approach estimates
the optical image based on the data likelihood model given in section 3.1. This formulation
does not incorporate any a priori information about the image. Nevertheless, the noise scale
X is unknown and has to be estimated as described in section 4. Note that the ML (no prior)
formulation is in fact regularized by the stopping criterion of the conjugate gradient algorithm
used in the minimization of the resulting objective functional. We list the parameter set used
in the hierarchical prior design in table 3.

The reconstructed images are shown in figure 4. The true mean values and the sample
average of the estimated absorption coefficients of the heterogeneity on the left and on the right
and of the background are shown in table 4. Even though the anatomical image indicates a
heterogeneity on the right, the hierarchical Bayesian formulation leads to a qualitatively good
reconstruction. The ML estimate of the image detects the rectangular inclusion, but suffers
from low resolution and lacks accuracy in the reconstructed value of the absorption coefficient
of the rectangular absorber.

5.3. 2D experiment with MR-simulated data

We used the Ti -weighted MR breast image from Ntziachristos et al (1999) to design a realistic
optical breast model (figure 5). The MR breast image was segmented into parenchyma and
adipose layers by applying a simple thresholding algorithm with respect to the MR image
intensity values. Next, a tumour corresponding to an infiltrating ductal carcinoma revealed
by Gd-DTPA (gadolinium-diethylenetriamine pentaacetic acid) enhancement was inserted
(shown in figure 5 as well). Each sub-region was assigned an absorption value as indicated
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Figure 4. The reconstructed images as a result of hierarchical Bayesian formulation (a), and
ML (no prior) formulation (b). ML solution is quantitatively inaccurate and suffers from low
spatial resolution. Hierarchical Bayesian formulation leads to an image estimate with quantitative
accuracy.

Figure 5. The original MR breast image with an artificial tumour inserted.

Table 4. The actual mean values and the mean of the reconstructed sub-images as a result of
maximum likelihood (no prior) and hierarchical Bayesian formulations. Sub-images are defined
on the sub-domains as indicated by the anatomical image shown in figure 3(b).

True mean Maximum Hierarchical

Sub-domain value likelihood Bayesian

Rectangular inclusion 0.076 0.061 0.071
Square inclusion 0.040 0.037 0.044
Background 0.040 0.041 0.040

(/,,adipose - 1 parenchyma tumour

in Ntziachristos et al (1999) a 0.03 cm-t a , 0.06 cm. 1 , i =

0.09 cm-1) to obtain an initial template (figure 6(b)). To simulate a corresponding optical
image, zero mean Gaussian noise was added prior to filtering the image by a low-pass filter.
The resulting optical image is shown in figure 6(b). Note the quantitative and spatial mismatch
along the boundaries and especially within the tumour. The homogeneous diffusion coefficient
of the medium was set to 0.042 cm. Nine frequencies ranging from 0 to 244 MHz were used
to obtain 729 measurements with nine sources and nine detectors positioned along the x-axis
on opposite sides. The optical medium was uniformly discretized into 90 pixels along the
x-axis and 60 pixels along the y-axis leading to a total of 5400 1 x 1 cm 2 pixels.
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Figure 6. The anatomical and optical images are shown on the left and right, respectively. Note
the spatial mismatch between the two images.
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Figure 7. The hierarchical Bayesian reconstruction of the optical image (a) using the anatomical
template shown in figure 6(a) for the design of the hierarchical image model. Part (c) shows the
image that zooms into the tumour region in the optical image shown in (a). The ML estimate of the
entire image and the sub-image focusing the tumour region are shown in (b) and (d), respectively.
The rectangular box in the figures shows the actual location of the tumour.

We performed two types of experiments to test the performance of the proposed
hierarchical Bayesian approach for this problem.

(i) Tumour present both anatomically and optically. In this experiment, the template
extracted from the anatomical image shown in figure 6(a) was used to design the hierarchical
image prior. As a result, the optical image was segmented into three sub-images each of
which corresponded to the labelled images in the anatomical image as shown in figure 6(a).
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Figure 8. The mean value and the standard deviation estimates for each sub-image (sub-images
are determined by the anatomical image) and noise scale estimate versus iteration number are
shown. The thick solid line shows the estimated values. The constant solid line in (a) shows the
actual mean value and the constant dashed line in (a) shows the assigned mean value (A2i + g.ao)
used in the design of the hyperprior defined on the sub-image means. The actual mean values in
these sub-regions are 0.032, 0.058 and 0.076, respectively. (a) The estimated mean values Ai for
each sub-image versus iteration number are shown. The estimates for the parenchyma, adipose
and tumour sub-images are given at the top, middle and bottom, respectively. (b) The estimated
standard deviation &i for each sub-image versus iteration number are shown on the left. The
estimates for the parenchyma, adipose and tumour sub-images are given at the top, middle and
bottom, respectively. The noise scale estimate ). versus iteration number is shown on the right.

In the design of the hyperprior defined on the mean (i.e. p(p IC)), values that are significantly
different from the actual mean of the sub-images were used. Thus, this experiment evaluates
the robustness of the proposed method when the true statistics of the optical image are
significantly different from the statistics extracted from the prior anatomical image.

The reconstructed image and the sub-image zoomed into the tumour region are shown in
figures 7(a) and (c), respectively. For comparison, the ML estimate of the image is shown in
figures 7(b) and (d). The simulation results show that hierarchical Bayesian approach leads to
qualitatively better results and resolves the tumour more accurately.

In figure 8, the estimates of the hyperparameters associated with the noise and image
models are given as a function of the iteration number. Note that the mean value estimates
for each sub-image converge to actual values, even though the corresponding assigned
hyperparameters regarding the mean value deviate from the true average optical values by
at least 15% (see table 5). The experiment also demonstrates that the initialization of the
hyperparameters does not have any effect on the performance of the estimation (figure 8).

(ii) Tumour present optically but not anatomically. In this experiment, we removed the
tumour region from the template extracted from the prior anatomical image, but kept it in the
optical image as shown in figures 9(a) and (b). As a result, the optical image was segmented
into two sub-images. The objective of this experiment is to evaluate how well the proposed
method reconstructs optical tumours when they are not anatomically present.

The reconstructed images for this experiment are given in figures 10(a) and (c),
respectively. The ML estimate of the image is given in figures 10(b) and (d). We observe
that, even though there is a significant mismatch between the optical image and the anatomical
counterpart in the tumour region, the hierarchical Bayesian formulation leads to a qualitatively
better reconstruction than the ML approach, even around the tumour. Furthermore, the tumour
is better localized as compared to the ML solution and is not biased towards the a priori
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Figure 9. The anatomical template (a) and the original optical image (b). Note that the tumour is
not anatomically present.
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Figure 10. The hierarchical Bayesian reconstruction of the optical image (a) using the anatomical
template shown in figure 9(a) for the design of the hierarchical image model. Part (c) shows the
image that zooms into the tumour region in the optical image shown in (a). The ML estimate of the
entire image and the sub-image focusing the tumour region are shown in (b) and (d), respectively.
The rectangular box in the figures shows the actual location of the tumour.

anatomical image. The error in the localization of the tumour can be attributed to the source-
detector geometry. The propagation of light along the y-direction results in a smoothing effect
on the optical image along the y-direction. This effect is enhanced near source and detectors
due to the behaviour of the solution of the diffusion equation. The vertically smoothing effect
can be observed in the ML estimate of the image more apparently (figures 10(b) and (d)). The
smoothing effect can be suppressed by incorporation of a priori information for the tumour



2854 M Guven et al

0.045 ooo[o

0.04 • 0.07

0.035 o__o______o___0__o_ _o o 0.0105
0.06-

0 20 40 60 80 100 120 140 000 .5

00 .10, 102 0.04

0.04 0.0241 0.0

0 20 40 60 80 100 120 140 10o 102 100 10,

(a) (b)

Figure 11. The mean values of the reconstructed sub-images versus iteration number (a). The

estimated values of the standard deviation of the two sub-images and the noise scale ). are shown in
(b). (a) The average value (79a in each reconstructed sub-image versus iteration number are shown.
The estimates for the parenchyma, adipose and tumour sub-images are given at the top, middle
and bottom, respectively. The domains of the sub-images correspond to the domains in the optical
image shown in figure 9(a). (b) The estimated standard deviation &i for each sub-image versus
iteration number are shown on the left. The estimates for the parenchyma, adipose sub-images are
given at the top and bottom, respectively. The sub-images correspond to the sub-images defined by
the anatomical template shown in figure 9(b). The noise scale estimate 1 versus iteration number
is shown on the right.

Table 5. The actual mean of the absorption values in each sub-image and the parameter set used
in the inverse problem formulations for the MR-simulated experiments I and II. /a10 0.0439 for
this experiment. N/A stands for 'not applicable'.

Sub-images

Parenchyma Adipose Tumour

The first (A.I + I.Lao, #j): (0.038, 0.23) (0.05, 0.3) (0.09,0.54)
experiment (gAi, Y*): (0.015,0.228) (0.02, 0.3) (0.036, 0.54)

The second (Ai + jaO, 0i): (0.03, 0.18) (0.06, 0.36) N/A
experiment (Ai, Y): (0.012,0.18) (0.024, 0.36) N/A

(-actual +Ilao): 0.032 0.058 0.076

as in case (i), where the tumour is better resolved (figure 7(c)). Further improvement can
be achieved by employing sources and detectors positioned along the y-axis as well as along
x-axis.

In figure 11, the average absorption value of each reconstructed sub-image versus iteration
number is given. The sub-images correspond to those as indicated by the actual optical image
shown in figure 6. Note that the mean value of the reconstructed image in the tumour region
converges to the actual value even though the anatomical image asserts that no tumour exists.

The set of parameters used in the design of hyperpriors for these experiments and the
actual mean of absorption values for each sub-image are shown in table 5.

6. Conclusion

In this work, we formulated the inverse DOT problem within a hierarchical Bayesian
framework where the hierarchical prior distribution is based on the a priori information
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extracted from a secondary high-resolution anatomical image. Instead of directly constraining
the optical image with the anatomical prior, we incorporated the a priori information in the
form of hyperpriors to impose constraints on the unknown hyperparameters of the image
and noise models. We proposed a computationally efficient iterative algorithm, based on an
empirical Bayesian approach, to simultaneously estimate the optical image and the unknown
hyperparameters. We tested the proposed approach in three different simulation experiments.
Numerical experiments demonstrate that the proposed approach improves the spatial resolution
and quantitative accuracy of optical images. Our study shows that the hierarchical Bayesian
approach provides an effective framework to capture the correlation between optical and
anatomical images.

The proposed hierarchical Bayesian formulation can be extended to incorporate spectral
a priori information (Intes et al 2004). Finally, we note that the results are based on
the linearized forward model around a homogeneous background. However, the proposed
hierarchical Bayesian formulation and the iterative optical image and hyperparameter
estimation scheme can be adapted to the nonlinear inverse DOT problem, wherein the Jacobian
of the forward model is iteratively updated.
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Appendix

The minimization of the objective function ('(x, X, p, a) with respect to the noise scale A
given the updated image estimate ýb results in the ML estimate 1 of the noise scale:

1_ Ily _ W •II 1 ,. (A. 1)
P A'

Note that the estimate 1 is independent of the hyperparameters associated with the image
model. On the other hand, the minimization of the objective functional with respect to 11
yields the MAP estimate of the mean. In order to find an estimate for the vector ji, we make
use of the probability density function formulation for each individual sub-image and rewrite
the objective function with gi dependent terms, given the sub-image estimate &i and the
current estimate of the standard deviation 6i:

1 11 & i - A i 12 + I 111 i _- Ai12. (A .2 )

2 6 i22
Minimization with respect to yields the estimate /2i for the mean value of the ith sub-image,
i.e.

S Ni 62 N!
A~i N i2 -• 2 E? Xik +' #i2 + •? 2 : ik)

1 6i++ 2 )NiI (A.3)
#2 Xk+ OiZ +6i2 /

where Xik denotes the kth voxel in the ith sub-image and Ilik = Ati stands for the assigned
mean value of the image mean for the kth voxel in the ith sub-image.
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Following a similar procedure, we make use of the hierarchical prior formulation for each
individual sub-image and rewrite the objective functional with -i -dependent terms, given the
sub-image estimate -ýi and the current estimate of the mean Ai:

N)+ 1 11 2 + w,12, (A.4)argmin 1I1, (qr) = log '" ) -- IIli - II + ý-2i
ari i Oyi

where oi = (a• ... Uri)T. After taking the derivative of the above expression, the estimate for
the sub-image standard deviation ai satisfies the following equation:

N, & 2  + N (1 6 i - p.t) = 0. (A.5)

This is a fourth-order equation in 6i, which is rather difficult to solve. In order to simplify the
solution, we make use of the following approximation:

1-1,3A a2, (A.6)

and equation (A.5) becomes a quadratic equation of the estimate ai2

Ni 6̂ 4 + N 16,2 IC, .2+N !Li ) =0. (A.7)

Then the positive value for the variance estimate 62 is equal to

&i2 = 2Ni/+2 > 0, (A.8)

£ 2N1/y72

where the discriminant A in the equation can be evaluated as

N'A2A = Ni2 + 4 ýC , 2 + N,-•i ) > 0. (A.9)

Note that in the limiting case, for y2 -+ cc, the sub-image variance estimate ,6 converges to

lim er2 = lim _, A = .ý ,1 i = 1, 2,.. . M , (A .10)
yT2oo yi*oc 2Ni/y7 Ni

which corresponds to the ML estimate of the variance (Guven et al 2003b).
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Abstract
Diffuse optical tomography is a typical inverse problem plagued by
ill-condition. To overcome this drawback, regularization or constraining
techniques are incorporated in the inverse formulation. In this work, we
investigate the enhancement in recovering functional parameters by using
physiological and spatial a priori constraints. More accurate recovery of
the two main functional parameters that are the blood volume and the relative
saturation is demonstrated through simulations by using our method compared
to actual techniques.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Probing human tissue with near infrared (NIR) light is emerging as a new, promising imaging
modality. The strength of this new technology relies on its ability to reveal the functional state
of deep tissue. To date the main applications of NIR technologies are functional brain
imaging (Strangman et al 2002, Villringer and Chance 1997), muscle imaging (Lin et al
2002) and optical mammography (Colak et al 1999, Franceschini et al 1997, Grosenick et al
2003, Intes et al 2003, Jiang et al 2002, McBride et al 2001, Tromberg et al 2000). The last
application is known to be of growing interest in both the research and medical community
(Cerussi and Tromberg 2003).

Optical mammography aims to retrieve important, local physiological parameters that
are the blood content and the relative oxygenation of the blood. These two functional

4 Now with ART Advanced Research Technologies.
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parameters are known to provide a means of discriminating between healthy and diseased
tissues. The blood content relates to the angiogenesis level of the tumourous mass, and the
relative oxygenation to its hypermetabolic state. These two functional signatures correlate to
malignancy.

Pre-clinical data strengthen these assumptions. However, difficulties arise due to the
specific nature of the light propagation. In this spectral window, the light is strongly
diffused leading to a relatively poor resolution for thick tissue investigation. Also, the
breast is by nature a heterogeneous organ with a complex spatial distribution of optical
relevant chromophores. In the NIR spectral range, four chromophores are accountable for
the absorption (Cerussi et al 2001). These chromophores are the oxy- ([HbO 2]), deoxy-
haemoglobin ([Hb]), the water ([H20]) and the lipids ([Li]). The first two chromophores are
providing an insight into the tissue functional state. The last two chromophores are linked to
the structural architecture of the breast. The spatial distribution and the relative concentrations
of these chromophores are patient dependent and even more can vary over time in the same
patient due to hormonal regulation (Chance 2001, Cubeddu et al 2000, Durduran et al 2002,
Shah et a 2001, Srinivasan et a 2003).

To enhance diffuse optical tomography (DOT) performances, researchers have proposed
fusing optical techniques with other medical imaging modality. Magnetic resonance imaging
(MRI) is the perfect candidate for optical co-registration (Brooksby et al 2003, Guven et al
2004, Ntziachristos et al 2002, Pei et al 1999, Pogue and Paulsen 1998). MRI provides high
spatial resolution maps of the breast optical structure that are relevant to the water and lipid
distribution. Moreover, MRI can provide a means to estimate the concentration of these two
structural chromophores (Merrit et a 2003). In this paper, we investigate the first step towards
incorporating physiological and spatial a priori information derived from MRI.

2. Methods

2.1. Forward model

The propagation of NIR light in tissue is well modelled by the diffusion equation. In the case
of heterogeneity, the diffusion equation can be solved by a perturbative approach (O'Leary
1996). In this work, we have used the Rytov approximation approach. In the case of DOT,
multiple source-detector pairs are used. The medium under consideration is sampled in voxels
and the problem can be written as a matrix equation (Arridge 1999), i.e.:

(D(rsl,rdl) (Wll ... WmnI 3v/ta(rn)J

where (D (r81, rdi) is the diffuse perturbative phase for the ith source-detector pair, Wij (O'Leary
1996) is the weight for the jth voxel and the ith source-detector pair and St 5a(rj) is the
differential absorption coefficient of the jth voxel. We limited our problem to image the
absorption coefficient. Boundary conditions for semi-infinite geometries and slab geometries
are derived using the extrapolated boundary condition and the image source technique
(Haskell et al 1994).

2.2. Functional imaging

The estimation of the absorption coefficient at several wavelengths enables the provision of
spatial maps of the targeted chromophores. In the case of the breast, the four chromophores
of potential diagnostic interest are the oxy- and deoxy-haemoglobin, the water and the lipid.
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The concentrations of these breast constituents are linearly related to the absorption values
through the linear system:

81.ZX1(rj 11 XI 1 g I, B/ H](j/ EHb HbO 2 EH2 0 ELi 8[Hb](rJ)
C B[H2](rj) (2)

~XP( a[H 20](rj)
gaP (rJ))/ (Ep HbO 2 • H20 8 Li t[Li](rj)

where SAak(rj) is the differential absorption coefficient at the kth wavelength Xk and for the
jth voxel, 8~k is the extinction coefficient of the Cth chromophore at the kth wavelength and
8[C](rj) is the differential concentration of the Cth chromophore for the jth voxel.

Solving this linear system on a voxel basis for a spectral set of absorption distributions
gives the functional maps required for diagnostic purposes. We will refer to this approach as
'indirect imaging' through this paper.

Recently, to overcome the burden and minimize the systematic errors due to the
ill-condition of both inverse problems, a method aiming at directly imaging the functional
parameters has been proposed (Durduran et al 2001). This method takes advantage of the
linear relationship described previously and formulates the inverse problem as

(D"' (rsl, rdl)

EM1 WX• 8 11 W I A1 811 CWlII'Hb HbO 2  H 2 0 Li / c[Hb](rj)4D-"(rsm, rd) 8)L2 VA2 X2 V 2  e 2 W X2 ewX 2  [Hb](r) (3

rHb r) W Hb0 2Wx 2  
H 20 Li X S[HbO2](rj) (: = . . . x | [H20](rj.) (3

(1)P (rsl' rdl). \XP rdXPb " ),2•p WAp 8HPoWX'p )LPwXP B[Li](rJ)|

Hb I-'b02  H20 Liý W /

V9 P (rsm rd.)

This new linear system is poorly conditioned and great care should be taken during the
pre-conditioning of this sensitivity matrix. In our case, we used an average column scheme
(Pei et al 2001) applied to each sub-matrix of the kernel as written in (3). This specific pre-
conditioning scheme led to the most accurate reconstructions. We will refer to the scheme
expressed in (3) as 'direct imaging' through this document.

The functional parameters that we are interested in are the blood volume:

[BV] = [Hb] + [HbO 2] (4)

and the relative saturation:

[SaO2] = tHbO2] (5)
[Hb] + [HbO 2]'

2.3. Bayesian framework

Due to the ill-posed and/or underdetermined nature of the DOT problem, the solution of the
inverse problem is not typically robust. One avenue to overcome this difficulty is to incorporate
a priori information constraining the space of unknowns.

The Bayesian approach provides a natural framework to incorporate prior information.
Guven et al (2004) proposed an algorithm based on the Bayesian framework with a spatially
varying a priori probability density function extracted from MRI anatomical maps. Here we
propose to extend this algorithm to a spatial physiological prior. The full derivation of the
theoretical developments for the algorithm is presented in detail in Guven et al (2004) and we
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follow herein the same mathematical expressions. We present in this investigation only the
salient features of the theoretical approach that are relevant to this work.

The available high-resolution anatomical image is segmented into sub-images that
represent major tissue types (typically: parenchyma, glandular and tumour). Prior probability
density function of the image is formulated in such a way that each sub-image is assigned a
mean value that need not be equal to its actual optical value; and a 'confidence level' is defined
in the form of an image variance formulation to allow local variations within sub-images. As
a consequence, the overall formulation of the prior information becomes spatially varying,
which is specific to the image of interest. Maximum a posteriori (MAP) estimate of the image
is formed based on the formulation of the image's probability density function

IMAP = arg max{log p(ylx) + log p(x)} (6)

where p (ylx) is the data likelihood function and p (x) is the probability density function of the
corresponding image. An 'alternating minimization' algorithm, which sequentially updates
the unknown parameters, is used to solve the resulting optimization problem.

For our purposes, the probability density function of the ith sub-image, as defined in the
spatial prior, becomes

1 ( 1)
p(xilai)= T2exp -_ 1,_-C,11 i= 1,2, ... , M (7)

where M is the number of sub-regions and Ni is the number of voxels in the ith sub-image,
xi is the unknown sub-image, Ci is the assigned chromophore mean concentration and ai2

the single variance, which is an unknown parameter (estimated during the solution). To
incorporate the confidence level into the statistical reconstruction procedure, the sub-image
variances are expressed as

1 /xp 1-•i
p(aj) = exp 0,lkui-&uII) i= 1, 2,..., M (8)

( 2 7ry2 )N1 122

where yi is the variance and di the mean value of ai. These two last parameters are a priori
defined by the user. Thus the confidence level incorporated into the statistical reconstruction
procedure is defined on the chromophores concentration. Hence, physiological priors are
implicitly defined and allow constraining the reconstruction in physiologically meaningful
ranges.

2.4. Measurement generation

Measurements were obtained by solving the frequency-domain diffusion equation with a finite
difference approach (FDM). We restricted our simulations to a two-dimensional (2D) geometry
for computational efficiency and to a continuous wave data set type. The slab thickness was
6 cm simulating a soft compressed breast. We placed nine sources on one side of the slab and
nine detectors on the other side, both evenly stretched along 8 cm (cf figure 1). Two square
inclusions of 1 cm 2 were simulated in this model.

The functional properties were chosen to mimic typical values encountered in the human
breast. Table 1 summarizes the functional parameters simulated.

The optical models were computed for six wavelengths to replicate the spectral
information gathered by our time resolved instrument that performs co-registration with MRI
(Intes et al 2002). The subsequent optical properties are compiled in table 2. The FDM
computations were performed with a 1 mm mesh resolution. The sources and detectors were
positioned 2 cm away from the edges to avoid any boundary effects.
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i0.08
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•,: 0.04
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Figure 1. Optical model used for the simulations. The optical properties displayed here correspond
to X = 750 nm.

Table 1. Functional parameters used to define the optical properties to generate the synthetic
measurements.

Background Left object Right object

BV (mM) 0.02 0.06 0.12
Sa02 (%) 70 65 50

Table 2. Optical parameters for the spectral set investigated herein. No [H20] and [Li] constituents
were used in these simulations for simplicity.

690 750 780 805 830 850

/IZ4 (cm- 1) 9.268 8.386 8.000 7.646 7.425 7.216
Us.

A/a (cm-t) 0.016 0.016 0.016 0.016 0.018 0.019
AaLeft (cm- 1) 0.054 0.050 0.050 0.049 0.053 0.056

Right -l
Rga (cm ) 0.140 0.115 0.107 0.095 0.100 0.105

3. Results

First, the estimation of the functional parameters simulated is accomplished with a conjugate
gradient descent (CGD) algorithm in the case of indirect imaging without using any kind of
prior. The results are displayed in figure 2.

Then reconstructions using the indirect imaging approach within the Bayesian framework
are provided in figure 3. First, an estimation of the absorption coefficients at the six wavelengths
was performed using spatial a priori information and a conjugate gradient algorithm with the
Polak-Ribiere method (Polak and Ribiere 1969). The absorption coefficients mean values
assigned were the simulated ones with a 30% level of confidence (Guven et al 2004). Then
classical spectroscopy was performed on the resulting optical maps using the linear system
of (3) reduced to [HbO 2] and [Hb] concentrations. Last, the results using physiological and
spatial a priori information are depicted in figure 4. The chromophore concentration means
assigned were the exact ones with a 30% level of confidence.

The functional quantitative values retrieved from each case and for the relevant region of
interest are summarized in table 3.
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Figure 2. (a) Blood volume (mM) reconstructions and (b) saturation estimates (%) in the case of
classical indirect imaging.

0 0
(b)
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Figure 3. (a) Blood volume (mM) reconstructions and (b) saturation estimates (%) in the case
of Bayesian indirect imaging. The assigned mean values of the absorption correspond to the true
absorption values with a 30% level of confidence.

2 2
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0.02 0.04 0.06 0.08 0.1 0.12 0 20 40 60 80 100

Figure 4. (a) Blood volume (mM) reconstructions and (b) saturation estimates (%) in the case of
Bayesian direct imaging. The assigned mean values correspond to the true concentration values
with a 30% level of confidence.

4. Discussion

In all the cases investigated herein, the two inclusions were reconstructed. As expected,

the incorporation of spatial a priori information increased the image resolution. In the
case of indirect imaging without a priori information the two inclusions are elongated and

thus the contrast is diluted. This fact is reflected in the estimation of the blood volume that is
underestimated for both objects ("-35% lower estimate). When apriori anatomical information

is incorporated within the Bayesian framework, the estimation of the blood volume is more
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Table 3. Functional parameters recovered with the three approaches and for the three different
functional areas. The values proposed here correspond to the mean value of the entire ROI defined
as the a priori spatial masks. [BV] in mM and [SaOz] in %.

Background Left object Right object

[BV] [SaO 2] [BV] [SaO2] [BV] [SaO2]

Indirect imaging 0.023 71 0.042 67 0.075 57
Bayesian indirect imaging 0.019 72.46 0.065 63.73 0.122 55.44
Bayesian direct imaging 0.020 69.95 0.061 65.27 0.127 50.02

accurate falling to less than 10% of misestimation in the worse case (1% in the best case).
Moreover, when direct imaging is applied in this framework, the two objects are recovered
respectively within 1% and 5% for the left and right objects compared to 8% and 2% in the
case of indirect imaging.

The enhancement of the technique is even more notable when SaO2 is considered. The
recovery of SaO2 is then more robust but also less prone to artefacts. Especially in the case of
the right object, the recovery of the SaO2 is superior to the direct imaging approach within the
Bayesian framework.

Overall, these simulations highlight the potential of our approach to provide more accurate
maps of the relevant functional diagnostic parameters. These simulations were limited to
[BV] and SaO2 recovery. The approach is easily extensible to [H20] and [Li]. Especially, the
ability of MRI to provide spatial concentration of these chromophores for the assigned prior
strengthens our approach (Merrit et al 2003).

The mean values of the chromophores and the anatomical a priori information are defined
by the user. The anatomical maps are provided by the structural MRI maps (such as TI)
and tumour delineation could be performed by Gd enhanced MRI. Moreover, estimation of
the water, lipid and BV concentrations are feasible with MRI. These values can be used for
the mean concentration priors. Also, an alternative is to obtain these values with a simple
algorithm such as diffuse optical spectroscopy (Ntziachristos et al 2002). The paradigm of
uniform concentrations for a certain tissue type is overcome in the Bayesian formulation by
defining a level of confidence. These effects of confidence ensure the reconstructions are in a
physiologically meaningful range and allow the recovery of heterogeneous concentration in a
certain kind of tissue type. Such heterogeneous estimates are visible in figures 3 and 4.

This last point is of paramount importance in the case of MRI-assisted DOT. The contrast
provided by MRI is not expected to be exactly congruent with the optical contrast. Allowing
heterogeneous bounded reconstructions within each sub-image compensates for discrepancies
between both modalities.

5. Conclusion

We reported in this work our first step towards incorporating physiological and spatial
a priori information derived from MRI to assist DOT. Better estimates of the main functional
parameters that are [BV] and [SaO 2] were achieved. More accurate functional maps can lead
to an increase of the sensitivity and specificity of optical techniques by incorporating structural
contrasts that are known to occur in breast cancer. Moreover, these accurate estimations will
be important for application such as therapy monitoring (Zhang et al 2003).

This preliminary work will be continued with experimental validation and incorporated
in our ongoing clinical trial at the University of Pennsylvania. Also, the investigation will be



N162 X Intes et al

extended to the potential of our approach to recover exogenous contrast agent concentrations.
New classes of contrast agents that are tumour specific (Licha 2002) and/or compatible with
both technologies (Josephon et al 2002) will be investigated. The inclusion of spatial and
temporal a priori information is expected to provide a better estimate of the fluorochrome
concentration but also to probe physiological parameters such as extravasation (Intes et al
2003, Cuccia et a! 2003) that are still elusive with DOT for thick tissue investigation.
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Abstract

Compartmental modeling of indocyanine green (ICG) pharmacokinetics, as measured by near

infrared (NIR) techniques, has the potential to provide diagnostic information for tumor dif-

ferentiation. In this paper, we present three different compartmental models to model the

pharmacokinetics of ICG in cancerous tumors. We introduce a systematic and robust ap-

proach to model and analyze ICG pharmacokinetics based on the extended Kalman filtering

(EKF) framework. The proposed EKF framework effectively models multiple-compartment

and multiple-measurement systems in the presence of measurement noise and uncertainties

in model dynamics. It provides simultaneous estimation of pharmacokinetic parameters and

ICG concentrations in each compartment. Moreover, the recursive nature of the Kalman filter

estimator potentially allows real time monitoring of time varying pharmacokinetic rates and

concentration changes in different compartments. Additionally, we introduce an information

theoretic criteria for the best compartmental model order selection, and residual analysis for

the statistical validation of the estimates. We tested our approach using the ICG concentration

data acquired from four Fischer rats carrying adenocarcinoma tumor cells. Our study indicates

that, in addition to the pharmacokinetic rates, EKF model may provide parameters that may be

useful for tumor differentiation.

Index Terms

Extended Kalman filter, indocyanine green, compartmental analysis, pharmacokinetics, tumor

characterization.
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I. INTRODUCTION

Near infrared (NIR) diffuse optical imaging and spectroscopy methods provide quantitative functional

information that cannot be obtained by the conventional radiological methods [1], [2], [3]. NIR techniques

can provide in vivo measurements of the oxygenation and vascularization states, uptake and release

of optical contrast agents, and chromophore concentrations with high sensitivity. In particular, NIR

diffuse optical techniques in conjunction with optical contrast agents have the potential to characterize

angiogenesis, and to differentiate between malignant and benign tumors [4], [5], [6], [7].

At present, indocyanine green (ICG) is the only NIR optical agent approved for human use. In NIR

measurements, the presence of ICG within an imaging volume results in an increased signal that can be

observed over the course of the experiment. Study of the time kinetics of ICG concentration curves may

provide physiologically relevant information for tumor differentiation. Specifically, cancerous tissue types

are expected to show high and fast uptake due to the proliferation of "leaky" angiogenetic microvessels,

while normal and fatty tissue show little uptake.

A number of research groups reported compartmental modeling of ICG time-kinetic measurements

using NIR methods for tumor diagnosis in animal and human subjects [8], [9], [10]. Compartmental

model is a mathematical description of the concentrations of contrast agents in which each compartment

represents kinetically distinct tissue type. It consists of a set of coupled ordinary partial differential

equations (ODE) and a measurement model. Coefficients of the ODE's are the physiological parameters

of interest that represent rates of exchange between different compartments. These parameters are non-

linearly related to the total concentration of ICG measured by NIR methods. Furthermore, concentration

of ICG in each compartment cannot be directly measured non invasively by NIR techniques, making the

pharmacokinetic parameter estimation a highly non-linear problem.

Current methods of ICG compartmental modeling involve curve fitting methods and various techniques

for solving differential equations. Gurfinkel et al. presented a two-compartment model for ICG kinetics

and estimated model parameters [8]. The measurements were obtained using a frequency domain photon

migration system coupled with a charge-coupled device. The pharmacokinetic parameters are estimated
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for each pixel based on a curve fitting method. This study indicates that model parameters show no

difference in the ICG uptake rates between normal and diseased tissue. Cuccia et al. presented a study of

the dynamics of ICG in an adenocarcinoma rat tumor model [9]. A two-compartmental model describing

the ICG dynamics is used to quantify physiologic parameters related to capillary permeability. The ICG

concentration curves were fitted to the compartmental model using a non-linear least squares Levenberg-

Marquart algorithm. It was shown that different tumor types have different capillary permeability rates.

Intes et al. presented the uptake of ICG by breast tumors using a continuous wave diffuse optical

tomography apparatus [10]. A two-compartment model is used to analyze the pharmacokinetics of ICG.

A curve fitting algorithm, namely the non-linear Nelder-Mead simplex search, is used to estimate the

pharmacokinetic parameters. This study shows that the malignant cases exhibit slower rate constants

(uptake and outflow) as compared to healthy tissue.

While the studies described above demonstrate the feasibility of the ICG pharmacokinetics in tumor

characterization; due to highly non-linear nature of the pharmacokinetic parameter estimation, variation in

parameter values from one subject to another, and sparse data available in clinical and laboratory settings,

a systematic and robust approach is needed to model, estimate and analyze ICG pharmacokinetics. Such

an approach must include: i) a method for compartmental model order selection, ii) a robust method of

estimating ICG pharmacokinetic parameters, and iii) a method of validating the selected model and the

estimation results.

In this paper, we present three different compartmental models for the ICG pharmacokinetics in

cancerous tumors and propose an extended Kalman filtering (EKF) framework to estimate the model

parameters. The models capture the transportation of ICG between the vascular and extravascular com-

partments, including interstitial fluid region, parenchymal cell, intracellular binding site, and extravascular,

extracellular spaces (EES). Kalman filter (KF) is an optimal recursive modeling and estimation method

with numerous advantages in ICG pharmacokinetic modeling. These include: i) effective modeling of

multiple compartments, and multiple measurement systems governed by coupled ordinary differential

equations, in the presence of measurement noise and uncertainties in the compartmental model dynam-
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ics; ii) simultaneous estimation of pharmacokinetic model parameters and ICG concentrations in each

compartment, which is not accessible in vivo by means of NIR techniques; iii) recursive estimation of

time-varying pharmacokinetic model parameters; iv) statistical validation of estimated concentrations and

error bounds on the pharmacokinetic parameter estimates; v) incorporation of available a priori information

about the initial conditions of the permeability rates into the estimation procedure; vi) potential real-time

monitoring of ICG pharmacokinetic parameters and ICG concentrations in different compartments due

to the recursive nature of EKF estimation method. Additionally, we present a method of selecting the

optimal compartmental model order based on Bayesian information criteria, and a statistical validation

method based on the residual analysis.

We tested our approach using the ICG concentration data acquired from four Fisher rats carrying adeno-

carcinoma tumor cells. Two-, three- and four-compartment models are fitted to data and pharmacokinetic

model parameters and concentrations in different compartments are estimated using the EKF framework.

Bayesian information criteria suggests that the two-compartment model provides a sufficient fit for our

data. The estimated model order and the model parameters are further validated by the residual analysis.

The model parameters were used to differentiate between two types of cancerous tumors. Our study

suggests that the permeability rates out of the vasculature are higher in edematous tumors as compared

to necrotic tumors. Additionally, we observed that in the two-compartment model, the ICG concentration

curve is higher in the EES compartment in edematous tumors. This suggests that the ratio of the peak

value of the ICG concentrations in different compartments may be a useful parameter to differentiate

tumors.

The paper is organized as follows: In Section II, we present the two-, three- and four-compartment

models for the ICG pharmacokinetics in tissue. In Section III, we present the state-space representation of

the compartmental models; estimation of ICG pharmacokinetics parameters and ICG concentrations in the

EKF framework; and optimal model order selection criteria. In Section IV, we present the experimental

results obtained from Fischer rat data. Section V summarizes our results and conclusion. The appendix

includes the derivation of the likelihood function used in the Bayesian information criteria.
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II. ICG PHARMACOKINETIC MODELING USING NIR MEASUREMENTS

A. Indocyanine Green

ICG is an optical dye commonly used in retinopathy and hepatic diagnostics. Given its low toxicity

and FDA approval, it has recently been utilized as a blood pooling agent for the detection and diagnosis

of cancerous tumors by means of NIR optical methods. The absorption peak of ICG is 805 nm and

the fluorescence peak is at 830 nm. ICG has strong affinity for blood proteins. In plasma, ICG is near-

completely bound, primarily to albumin. As a result, its in vivo kinetics are similar to those of a 70 kD

molecule, although it has a molecular weight of about 700 D [11], [12], [13], [14], [15].

ICG is eliminated from the body primarily through the bile. Outside of the circulatory system, it is not

available for removal until it returns to the system. The kinetics of this transition offers a potential means

of non-invasively assessing the leakiness of large molecules from the microvasculature; this permeability

is a characteristic of the poorly developed vasculature observed in angiogenesis. The increase in local

microvasculature density is also expected to induce increased perturbation in the optical signal from

intercapillary ICG.

There are some differences in the delivery of ICG between normal and cancerous vasculature. In normal

tissue, ICG acts as a blood flow indicator in tight capillaries of normal vessels. However in tumor, ICG

may act as a diffusible (extravascular) flow in the leaky capillary of cancer vessels. Additionally, the

permeability rate is expected to increase as the malignancy advances [9], [10]. Figure 1 (a) and (b)

illustrates the ICG flow for healthy and malignant tissue, respectively.

B. Compartmental Analysis of ICG Pharmacokinetics

Compartmental modeling allows relatively simple and effective mathematical representation of complex

biological responses due to contrast agents. A region of interest is assumed to consist of a number of

compartments, generally representing a volume or a group of similar tissues into which the contrast

agent is distributed. The concentration change in a specific compartment is modeled as a result of the

exchange of contrast agent between connected compartments. These changes are modeled by a collection
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of coupled ODEs; each equation describing the time change dictated by the biological laws that govern

the concentration exchanges between the interacting compartments [16], [17], [18], [19]. In this work, we

investigate three different compartmental models for the ICG kinetics and determine the optimal model

order, based on Bayesian information criteria.

1) The four-compartment model. Figure 2 illustrates the capillary and extracapillary space relevant

to the four compartment model. The four-compartment model includes capillary region, interstitial fluid

region, parenchymal cell region and intracellular binding site as compartments [20]. The ICG, injected

intravenously into the subject, can pass through from capillary into reversible binding site inside the

cell through the interstitial fluid region and the parenchymal cell region [20], [21], [22]. Moreover,

in advanced tumor stages, the leakiness around the tumor vessels is expected to increase, resulting in

higher permeability rates during the transportation of ICG into the compartments. A block diagram of

the four-compartment transport and chemical model of ICG delivery is shown in Figure 3(a).

Let Cp, Ci, Cp,, Cb denote the ICG concentrations in plasma, interstitial fluid region, parenchymal
cell region and intracellular binding site, respectively; and let k 4 ), ), k 4), k (4) , k(d4), k(4) and k(4)

out'a b C d andf

be the constants used as equilibrium coefficients as shown in Figure 3(a). Then the set of differential

equations representing the ICG transition between the four compartments are given as follows:

The leakage into and the drainage out of plasma:

dt - C.(t) - k (4 ) CP)(t) -(4)

The leakage into and the drainage out of interstitial fluid region:

dCi(t) ()Cp(t) - k()Ci(t) ( k(4)C,(t) + k( 4)Cp(t). (2)
dt

The leakage into and the drainage out of parenchymal cell:

dc(t) - kc kd4 c (t) _ + kf Cb(t) (3)
dt

The leakage into and the drainage out of intracellular binding site:

dCb(t) = k i)cp (t) - k)Cb(t). (4)
dt fb J
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Physiologically, the equilibrium constants are defined by the permeability surface area products given as

PSp, where P is the capillary permeability constant, S is the capillary surface area, and p is the tissue
density. k (4) is proportional to the flow rate into and out of the capillary and k (4), k(4), k(4), k (4), k(4)

and k 4) represent intra-tissue physiologic effects during ICG delivery from capillary to binding site. Note

that the superscript denotes the order of the compartmental model.

The actual bulk ICG concentration in the tissue measured by NIR spectroscopy, m(t), is a linear

combination of the ICG concentrations in four different compartments.

m(t) = v(4) C (t) + v(4)ci(t) + V()C c(t) + V(4)Cb(t), (5)

where v(4, I , Vi4pc I vb4, are volume fractions of plasma, interstitial fluid region, parenchymal cell

region and intracellular binding site, respectively.

2) The three-compartment model. In this model, the parenchymal cell and intracellular binding site

compartments are combined to form a single compartment called parenchymal cell. This amounts to the

assumptions that the transition of ICG into the intracellular binding site is negligible as compared to the

other compartments, and therefore omitted from the model. A block diagram of the three-compartment

transport and chemical model of ICG delivery is shown in Figure 3(b). Three-compartment transport

equations are given as follows:

The leakage into and the drainage out of plasma:

dCp(t) - k(3)C(t) - k(3)C (t) - k ()C (t) (6)
dt b a out P

The leakage into and the drainage out of interstitial space:

dC (t) _ k(3)CP(t) - k(3)C.(t) - k (3)C(t) + k(3) Cp(t) (7)
dt a b St)

The leakage into and the drainage out of parenchymal cell:

dCpc(t) = k(3)C.(t) - k( 3)Cpc(t) (8)
dt z d

The total ICG concentration measured by NIR:

m(t) = V(43)c (t) + V 3)Ci(t) + V1()c C(t) (9)

(3) (3) (3)where Vp( , Vi , v3) and Cp, Ci, Cp, are as defined in the four-compartment model.
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3) The two-compartment model: In the two-compartment model, the tumor region is assumed to be

composed of two compartments, namely the plasma and EES [9], [23], [24]. EES is defined as the region

that lies outside of both the vascular region and the tumor cells. The transition of the ICG to the third

and fourth compartments are assumed to be negligible. Therefore the last two compartments in the four

compartment model is omitted. We consider transcapillary leakage to occur only at the tumor site. We

also assume that a small perturbation of the global plasma concentration does not affect the bulk removal.

Figure 3(c) shows the block diagram of the two-compartment model for the ICG kinetics. Let Cp and

C, denote the ICG concentrations in the plasma and EES, respectively. Then the two-compartment ICG

chemical transport equations are given as follows:

The leakage into and the drainage out of plasma:

dCp(ct) _ ) (k2)2 C(t) - p (t)dt - - - koutCt) (10)

The leakage into and the drainage out of the EES:

dC,(t) = k(2)Cp(t) - k•2C 6 (t). (11)
dt

The parameters k( 2) and k(2) govern the leakage into and the drainage out of the EES, respectively.

The parameter k2) describes the ICG elimination from the body through kidneys and liver.

Actual bulk ICG concentration in the tissue measured by NIR is a linear combination of plasma and

EES ICG concentrations given by:

M (t) = (2 CP (t) + V (2)C(), (2V e (12)

where the parameters v(2) and V(2) denote the plasma and EES volume fractions, respectively.

III. EXTENDED KALMAN FILTERING FOR THE ICG PHARMACOKINETICS

For the rest of our discussion, we shall use the explicit form of the two-compartment model as a

running example to clarify our notation.
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A. State-space Representation of the ICG Pharmacokinetics

Coupled differential equations resulting from the two-compartment modeling of the ICG pharmacoki-

netics can be expressed in state-space representation as follows:

C(t) k(2 ) (2 ) c+ M(t)b= + w),(13)
m(t 2) -(k (2) + kC(2)

[M t(t) W
2V2 +c77(

where w(t) and q/(t) are uncorrelated zero mean Gaussian processes with covariance matrix Q, and

variance a2, respectively.

The closed form of the continuous time state-space representation for the n-compartment model is

given by:

dC(t) = K(a()C(t)dt + w(t)dt,

m(t) = V(a0:)C(t) + 77(t). (14)

In equation (14), C(t) denotes the concentration vector; i(0:n) is the KF system matrix, V(an) is

the KF measurement matrix and a,, is the parameter vector whose elements are the pharmacokinetic

constants and the volume fractions for the n-compartment model. For example the parameter vector 02

for the two-compartment model is given as

Ce2= [k(2) (2) out(2) V (2)V2)]. (15)

The ICG measurements in equation (14) are collected at discrete time instances, t = kT, k = 0, 1, ... ,

where T is the sampling period. Therefore, the continuous model described in equations (14) has to be

discretized. To simplify our notation, we shall use C(k) = C(kT) and m(k) = m(kT). The discrete KF

system and the measurement models are given as follows:

C(k + 1) = •d(an)C(k) + w(k)
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m(k) = Vd(a.)C(k) + rj(k), (16)

where K~d(an) = e(a"-) is the discrete-time KF system matrix and Vd(an) = V(an,) is the discrete-time

KF measurement matrix. w(k) and q/(k) are zero mean Gaussian white noise processes with covariances

matrix Qd and variance Oa, respectively. Discretization of state-space models can be found in various

system theory books, see for example [25].

An explicit form of the discrete KF model for the two-compartment case is given as follows:

Ce(k + 1) T[i T12 Ce(k) 1 W(k) (17)

Cp(k + 1) [21 T22  Cp(k)

= + (k)] (k),
k V VP Cp(k)

where Tij is the ith row and jth column entry of the system matrix Nd(ca2). Note that the matrix entry

rij is an exponential function of the parameters k(2) kb2) and ko(t*

To simplify the estimation process, we shall first estimate the matrix entries, rij, of the discrete-time

system matrix Kd(an) and then compute the pharmacokinetic parameters for each compartmental model.

B. Modeling of ICG Pharmacokinetic Parameters and Concentrations in Extended Kalman Filter Frame-

work

Kalman filter provides a recursive method to estimate the states in state-space models, in which the

states are driven by noise, and the measurements are collected in the presence of measurement noise

[26], [27], [28]. In the case of non-linear state-space models, the extended Kalman filter linearizes the

model around the current state estimate, and then applies the KF to the resulting linear model. The EKF

framework is also utilized for the joint estimation of the unknown system and/or measurement parameters

and states. In a linear state-space model when both states and system parameters are unknown, the linear

state-space model can be regarded as a non-linear model in which the linear system parameters and

states are combined to form the new states of the non-linear model. This system is then linearized and
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solved for the unknown states using the KF estimator [29], [30], [31]. In our -problem, our objective is

to simultaneously estimate the states, i.e., the ICG concentrations in each compartment, and the system

and measurement parameters, i.e., the pharmacokinetic parameters and the volume fractions.

We consider a Taylor series approximation to the non-linear system function at the previous state

estimates, and that of the measurement function at the corresponding predicted position. This approach

provides a simple and efficient method to handle the non-linearity in the new system and measurement

models.

Let 0, (k) denote the discrete-time parameter vector of the pharmacokinetic rates and volume fractions

at time k. For example, in the two-compartment model, 02 (k) is given as

02 (k) = ( " 7"21 1/22 (2) (18)

In the EKF framework, 0,,(k) is treated as a random process with the following model:

O0(k + 1) = 0,(k) + ;(k), (19)

where ;(k) is a zero mean white noise process with covariance matrix Sd.

We append the parameter vector O0(k + 1) to the ICG concentration vector C((k + 1) to form the new

non-linear state-space model given as

C(k + 1) K(On)C(k) [ w(k) (20)

0o,,(k + 1) 0O,(k) q(k)

m~k) Vd (n) 0 C(k) ]+ 77(k),
m(k)= [V(O0) ] (k)

where K(On) = Kd(an).

The choice of Qd, Sd and Ud is crucial to the performance EKF estimator. It was shown that if these

values are selected less than the actual values, it leads to overconfidence in the accuracy of the estimates

of the error covariance matrix. Therefore, these matrices are regarded as tuning parameters and not as

the estimates of the true covariance matrices [32].
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C. EKF Joint Estimation for ICG Concentrations, Pharmacokinetic Parameters, and Volume Fractions

In this section we will summarize the major steps of the EKF estimator for the joint estimation of

ICG concentrations and compartmental model parameters.

Let the subscript kit denote the estimate at time k given all the measurements up to time t. Then the

1-step ahead prediction of the ICG concentrations and the compartmental model parameters are given as

follows:

[l=l [K(0n)( (21)
Onklk-1 On k-l1k-1

For the two-compartment model, Equation (21) becomes

Ceý 11 TiC,+ Ti 2Cp

Cp = rliCe + 22 p .(22)

L 02 - klk-1 L 02 - k-l1k-1

The error covariance matrix, Pklk-' of the 1-step ahead predictions is given as follows:

Qd 0
Pklk-1 = dk-11k-1lk-14li + [ (23)

0 Sd

where Jk is the Jacobian of the non-linear EKF system function at time k. Explicitly, it is given as:

K() a[K(6)C
Jk= 0-0-n) ] , (24)

0 1
klk

where 0 and I denote zero and identity matrices, respectively. The Jacobian matrix for the two-compartment

model becomes 1
(\11 Ti2 C' 6P 0 0 0 0)

A- 1 Tk o 00 e 6 P 00 , (25)

0(6x2) I(6x6) kik
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where 0(6×2) is a 6 x 2 zero matrix, and 1(6x6) is a 6 x 6 identity matrix.

The 1-step ahead predictions are updated to the kth-step estimates by means of the Kalman gain matrix

which is given by

Gk = Pklk-,AT[APklk-AT + ok (26)

where A is the following vector

[Vd(0) 0-[Vd(0)t] ] klk-1 (27)

For the two-compartment model A vector becomes

ý6(2) 6 (2) 0 o o o (2 8 ]kk-1)

The kth-step estimate of the concentrations and the parameters are obtained recursively using

C C

[ -I = - I - + Gk(m(k) - [Vd(O)d]kjk-1). 
(29)

For the two-compartment case, the kth-step estimate of the concentrations and the parameters is

dCe

CP Cp + Gk(m (k) -- ( 5(2) -- tp(2)Op)klk-1))• (30)

0 klk L 0 klk-1

The error covariance matrix, PkJk, of the kth-step estimates is updated as

Pklk = [I - GkA]Pklk-1, (31)

where I is the identity matrix.

The initialization of the ICG concentrations, pharmacokinetic parameters, and the volume fractions

plays an important role in the performance of the EKF algorithm. Theoretically, the state estimates can

be initialized at the expected value of the ICG concentrations, i.e. E[C(0)].

One approach to the initialization of the parameters is to utilize the state-space presentation given in

equation (16). Since E(m(O)) = Vd(0n(0))E[C(0)], m(0) - Vd(O,(O))E[C(O)] is a zero mean random
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variable. If we express the variance of the measurement m(O) in terms of the variance of C(O) using the

measurement model in equation (16), and solve for O0, we get the estimate b,(0) as the most appropriate

value for initialization. The details of the selection of the initial values for the parameters can be found

in [27].

The initialization of the error covariance matrix is also important for the performance of the EKE. The

error covariance matrix is the matrix which provides information about the error bounds for the estimates.

Theoretically, the initial error covariance matrix is a diagonal matrix where the diagonal entries are the

initial estimates of the variance of concentrations and pharmacokinetic parameters, i.e.

[ Cov(C(O)) ] (32)

0 Sd

D. Compartmental Model Order Selection

We adopted Bayesian information criteria (BIC) for the optimal model order selection. BIC is a well

known information theoretic criteria, in which the optimal model order is selected by minimizing a

cost function to avoid overfitting. The cost function depends on the number of observations, number of

unknown parameters to be estimated and the maximum likelihood function. A detailed discussion on BIC

can be found in [33], [34], [35].

In order to calculate the BIC for different compartmental models, we first derived a likelihood function

for the extended Kalman filter. The derivation is based on the maximum likelihood estimation of the

parameters in the Kalman filtering framework given as in [36], [37]. We then modified this likelihood

function for the extended Kalman filter estimator for the joint estimation of compartmental model

parameters and concentrations. The details of the derivation is provided in the appendix.

IV. EXPERIMENTAL RESULTS - ICG PHARMACOKINETICS IN FISCHER RAT DATA

We applied the proposed EKF framework to the pharmacokinetic analysis of ICG data obtained from

four Fischer rats with adenocarcinoma. R3230ac adenocarcinoma cells were injected below the skin into

four Fischer rats 3 weeks prior to measurements. The tumor size for the rats ranges in diameter from 5
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to 30 mm. The ICG concentration data was collected with an MRI-NIR imager. The configuration of the

apparatus, the data collection procedure, and the details of the experimental approach have been reported

in [9], [38], [39].

Figure 4 presents the ICG concentrations (ltM) from four different rats. Tumors in Rat 1 and 2

are classified as necrotic because of their low tissue oxy-hemoglobin, low total hemoglobin, and low

gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) enhancement levels. Tumors in Rat 3 and

4 are classified as edematous due to their high water content [40]. It can be observed from Figure 4

that the necrotic cases display low peak ICG concentration values and slowly rising slopes unlike the

edematous cases with high peak values and sharp rising slopes.

We estimated the pharmacokinetic rates for the four-, three- and two-compartment models. The results

are given in Tables I, II, and III, respectively. The error bounds on the estimates are derived from

the covariance matrix of the EKF estimator. The estimated pharmacokinetic rates for all compartmental

models indicate that the exchange rates between the capillary and the adjacent compartment (ISS or EES),

k,', kV, n = 2, 3, 4, are significantly different for the necrotic and edematous tissue. We observe that for

the four- and three-compartment models, the estimated exchange rates between the ISS and parenchymal

cell compartments, k1, k0, n = 3, 4, are comparable. Similarly, the estimated rate of drainage out of the

plasma, o n = 2, 3, 4, are consistent for all models.

Based on the model parameter estimates, we computed the BIC values for each rat data to reveal

overfitting. The BIC values and the number of unknown parameters for each rat data are tabulated in

Table IV. The BIC suggests that the two-compartment model is sufficient for all four measurement sets.

We further analyze the goodness-of-fit of the compartmental models by means of the residual analysis.

The basic idea of the residual analysis is to compare the actual measurements m(k) with its 1-step ahead

predictions, fJi(k)klk-l, based on the estimated parameters. A detailed discussion on residual analysis

can be found in [26], [41]. The mean and variance of the residual error for the four-, three- and two-

compartmental models are tabulated in Table V. To normalize the error with respect to the magnitude

of the actual measurements, we calculated the signal-to-noise ratio (SNR) using the median value of the
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measurements and the mean of the residual errors for each rat data. As seen from the results in Table VI,

the SNR values are higher for the two-compartment case for all data sets. These results show that the

two-compartment model provides the minimum bias and the best statistical efficiency. Figure 5 shows the

measured total concentration data and its 1-step ahead prediction based on the two-compartment model

for each rat data. Clearly, there is a good agreement between the actual and the estimated measurements.

Based on the BIC and residual analysis, we conclude that the two-compartment model provides the

best statistical fit for the rat data and investigate the estimated model parameters in more detail.

In the two-compartment model, the rate of leakage into the EES from the capillary,ka 1(2), range from

0.0106 to 0.0777 sec- 1 and the rate of drainage out of the EES and into the capillary, k(2), range from

0.0247 to 0.0840 sec- 1. Note that the permeability rates for the necrotic cases are lower than the ones

observed for the edematous cases. Additionally, the estimated values for the pharmacokinetic rates are

much higher than the normal tissue values due to the increased leakiness of the blood vessels around the

tumor region [9], [42]. The estimated plasma volume fractions agrees with the values reported earlier [9],

and the values presented in the literature [43], [44]. These results confirm that vz2) can be significantly

large in tumors and that its magnitude varies with respect to the stage of the tumor [24]. The estimated

values of EES volume fraction, vA2), range from 0.218 to 0.53, in agreement with 0.2 to 0.5 range reported

earlier [23]. Note that these results are valid only for the ICG pharmacokinetics in tumor cells R3230ac,

adenocarcinoma and may not be generalized for other types of contrast agents or tumor types.

Figure 6 shows the estimated ICG concentrations in the plasma and the EES compartments for the

two-compartment model for Rats 1 to 4. Note that initial estimates of concentrations are noisy due to the

limited data used in the recursive EKF estimation. This can be improved by Kalman backward smoothing

[45]. The peak values of the plasma concentration, Cp, range from 2.72 gM to 4.28 AM. The absolute

value of the concentrations may not be very useful. However, concentration of ICG in a compartment

relative to the one in another compartment may provide useful information. We consider the ratio of the

peak concentrations in the plasma and EES as a potential parameter to discriminate different tumors.

The peak CpI/C ratio for Rats 1 to 4 is 0.551, 0.593, 0.787, 1.151, respectively. This ratio is higher in
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edematous cases consistent with the fact that ICG-albumin leaks more into the EES in edematous tumors.

Additionally, the ICG concentration in plasma decays faster than the ICG concentration in EES due to

its elimination through the liver and kidneys.

V. CONCLUSION

In this paper we present three different compartmental models, an extended Kalman filtering framework

for the modeling, and estimation of ICG pharmacokinetics in cancerous tumors based on NIR measure-

ments. Additionally, we introduce information theoretic criteria and residual analysis for model selection

and statistical validation. Proposed compartmental models are fit to data obtained from Fischer rats with

adenocarcinoma cells. The pharmacokinetic rates and volume fractions are estimated for all models. The

estimated rates for all compartmental models indicate that the exchange rates between the capillary and

the adjacent compartment (ISS or EES) are significantly larger for the edematous tissue as compared

to the necrotic cases. Based on the BIC and residual analysis, we concluded that the two-compartment

model provides the best statistical fit for the rat data and ICG pharmacokinetics. Parameters of this

model indicate that the permeability rates are higher for edematous cases as compared to the necrotic

tumors. Additionally, we estimated the ICG concentrations in different compartments. The concentrations

in different compartments may provide additional parameters for tissue characterization.

While our study indicates that two-compartment provides the best fit for the ICG pharmacokinetics,

the four or three-compartment models may be advantageous for modeling the pharmacokinetics of

functionalized optical contrast agents that actively accumulate or activate in diseased tissue [46], [47],

[48]. In the near future, we plan to investigate three and four-compartmental models in the EKF framework

for these optical agents collected from animals, and the ICG data collected from human subjects.
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APPENDIX

The cost function for BIC is given as

kBIc(P) =plnN - 2 In L(Op,m(1),m(2) ...... m(N)), (33)

where p is the dimension of Op, which is related to the number of compartments in the model, N is the

data length, and L(O, m(l), m(2) ....... , m(N)) is the likelihood function.

The likelihood function for the EKF is given as

L(O, m(1), m(2) ...... m(N)) = - 1 ln[det(IH)] - 2 E A THjIAk, (34)
k=1 k=1

where the matrix H is defined as:

nk = APklkA T +k) (35)

and Ua, A, and Pkjk-1 are as defined in Section III.C.

The matrix A is defined as:

Ak = m(k) - [Vd(O)C]klk-1, (36)

where m(k) is the ICG concentration data collected from Fisher rats at time k, and [Vd(b)C']klk_1 is the

1-step ahead estimate of the volume fractions and concentrations.

The explicit form of the likelihood function for BIC calculation is given as

L(0, m(1), m(2) ...... m,(N)) - 2 lIn[det(APklk-lA T +k2)]
k=1

_1 E[m(k) - [Vd(O)C]kIkl]T [APk~klA T + o2]-[m(k) - [Vd(O)CkIk-1].2k=l

where all the parameters and matrices are as defined in Section III.C.
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TABLE I

FOUR-COMPARTMENT MODEL:ESTIMATED PHARMACOKINETIC PARAMETERS USING EKF ALGORITHM

kak ckd 4  
k f kout

(Sec-1 10-2) (seC- 1 10-2) (sec-10-2) (sec-110-2) (SeC- 1 10-2) (sec-1l0-2) (see-110-3)

Rat 1 (Necrotic) 1.45±0.013 1.22±0.019 1.86±0.017 2.02±0.026 2.74+0.041 2.41±0.051 4.05±0.059

Rat 2 (Necrotic) 3.48±0.048 2.77+0.034 4.28+0.048 4.33+0.040 2.98±0.048 3.03+0.061 4.76+0.062

Rat 3 (Edematous) 4.94+0.052 5.16+0.067 4.22+0.052 4.13+0.067 4.14±0.070 4.27+0.078 5.39+0.085

Rat 4 (Edematous) 5.25+0.053 5.31+0.063 5.07±0.068 5.22+0.063 4.43+0.075 4.03+0.072 3.85+0.056

TABLE II

THREE-COMPARTMENT MODEL:ESTIMATED PHARMACOKINETIC PARAMETERS USING EKF ALGORITHM

ka3  k(3  k k (3

(sec- 1 1
02) (sec-o102) (sec-1102) (sec- 1 10) (sec-1 10-)

Rat 1 (Necrotic) 1.93+0.061 1.28+0.049 1.82+0.032 2.02+0.041 3.89+0.052

Rat 2 (Necrotic) 4.41+0.074 2.48+0.067 4.87+0.066 5.03+0.057 5.45+0.071

Rat 3 (Edematous) 4.71+0.085 3.88+0.077 4.95+0.059 4.68+0.050 4.42+0.040

Rat 4 (Edematous) 5.29+0.091 6.48+0.096 4.48+0.062 4.20+0.048 5.01+0.055

TABLE III

TWO-COMPARTMENT MODEL:ESTIMATED PHARMACOKINETIC PARAMETERS AND VOLUME FRACTIONS USING EKF

ALGORITHM

ka kb kou 2 V

(sec'-10- 2) (sec 1 10-2) (sec-61 0-3) (10-2) (10-2)

Rat 1 (Necrotic) 2.47+0.043 1.06+0.052 4.61+0.073 21.8+1.92 1.41+0.053

Rat 2 (Necrotic) 3.54+0.082 2.98+0.086 4.83+0.092 25.4+3.49 2.42+0.088

Rat 3 (Edematous) 6.90+0.101 4.93+0.072 3.95+0.048 30.4+2.81 4.84+0.120

Rat 4 (Edematous) 8.40+0.114 7.77+0.091 4.02+0.068 53.0+4.73 7.03+0.321
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TABLE IV

TEST FOR THE MODEL ORDER SELECTION FOR THREE DIFFERENT COMPARTMENTAL MODELS FOR FOUR DIFFERENT DATA

SETS

Ratl Rat2 Rat3 Rat4

Model p OBIC(P) OBIC(P) OBIC(p) OBIC(P)

Two-compartment Model 7 -178.242 -198.367 -202.81 -172.098

Three-compartment Model 11 -71.615 -83.849 -92.182 -63.912

Four-compartment Model 15 -39.719 -45.121 -56.340 -30.023

TABLE V

THE MEAN AND VARIANCE OF THE ERROR BETWEEN THE ESTIMATES AND MEASUREMENTS

Four-compartment Three-compartment Two-compartment

Mean Variance Mean Variance Mean Variance

Ratl 0.0987 7.64le-004 0.0605 4.732e-004 0.0072 2.567e-005

Rat2 0.1043 9.152e-004 0.0767 3.017e-004 0.0057 4.829e-005

Rat3 0.1204 8.905e-004 0.0883 4.921e-004 0.0041 3.021e-005

Rat4 0.0904 5.977e-004 0.0589 6.839e-004 0.0076 8.618e-005

TABLE VI

SNR VALUES FOR THREE DIFFERENT COMPARTMENTAL MODELS FOR FOUR DIFFERENT DATA SETS

Ratl Rat2 Rat3 Rat4

Model SNR (dB) SNR (dB) SNR (dB) SNR (dB)

Two-compartment Model 73.2 68.1 108.3 107.9

Three-compartment Model 30.7 36.1 23.9 47.0

Four-compartment Model 20.8 29.9 27.7 18.4
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FIGURE CAPTIONS

Fig. 1. A simple illustration of the capillary extracapillary structure.

Fig. 2. An illustration of the ICG flow (a) in tight capillary of normal vessel, (b) in permeable capillary

of tumor tissue.

Fig. 3. Block diagram of (a) the four-compartment, (b) the three-compartment, and (c) the two-compartment

models for ICG pharmacokinetics.

Fig. 4. ICG concentrations measured in tissue for four different rats.

Fig. 5. ICG concentration measurement data and 1-step prediction of the measurements for four different

rats.

Fig. 6. ICG concentrations in plasma, Cp(t) and EES, Ce(t), for four different rats. (a) Ratl, (b) Rat2,

(c) Rat3, and (d) Rat4.


